Skip to main content
Log in

Kinetic modelling and bifurcation analysis of chemomechanically miniaturized gels under mechanical load

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Chemomechanically responsive gels, with great potential applications in the fields of smart structures and biomedicines, present autonomously oscillatory deformation driven by the Belousov-Zhabotinsky chemical reaction. The dynamic behavior of the responsive gels is obviously affected by the external mechanical load. This approach proposed a kinetic model with an ordinary differential equation to describe the oscillatory deformation of the gels under the mechanical load. Then the periodic solutions and phase diagrams of the oscillation are obtained using the improved Runge-Kutta and shooting methods. The results demonstrated that bifurcations are typically existent in the system and the characters of the oscillatory deformation regularly depend on the mechanical load as well as the concentration of reactants and the stoichiometric coefficient of chemical reaction. This development is supposed to promote the practical applications of the chemomechanically responsive gels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Tanaka, T. Koga, F.M. Winnik, Phys. Rev. Lett. 101, 28302 (2008).

    Article  ADS  Google Scholar 

  2. K. Okeyoshi, R. Yoshida, Soft Matter 5, 4118 (2009).

    Article  ADS  Google Scholar 

  3. J. Ge, E. Neofytou, T.J. Cahill, R.E. Beygui, R.N. Zare, ACS nano 6, 227 (2012).

    Article  Google Scholar 

  4. X. Sui, X. Feng, M.A. Hempenius, G.J. Vancso, J. Mater. Chem. B 1, 1658 (2013).

    Article  Google Scholar 

  5. Y. Qiu, K. Park, Adv. Drug Deliver. Rev 64, 49 (2012).

    Article  Google Scholar 

  6. P. Dayal, O. Kuksenok, A. Bhattacharya, A.C. Balazs, J. Mater. Chem. 22, 241 (2012).

    Article  Google Scholar 

  7. G. Armstrong, Nat. Chem., DOI:10.1038/nchem.51 (2008).

  8. R. Yoshida, T. Takahashi, T. Yamaguchi, H. Ichijo, J. Am. Chem. Soc. 118, 5134 (1996).

    Article  Google Scholar 

  9. R. Yoshida, Biophysics 8, 163 (2012).

    Article  Google Scholar 

  10. P. Yuan, O. Kuksenok, D.E. Gross, A.C. Balazs, J.S. Moore, R.G. Nuzzo, Soft Matter 9, 1231 (2013).

    Article  ADS  Google Scholar 

  11. T. Ueki, M. Shibayama, R. Yoshida, Chem. Commun. 49, 6947 (2013).

    Article  Google Scholar 

  12. D. Das, M. Das, D.S. Ray, J. Chem. Phys. 137, 064103 (2012).

    Article  ADS  Google Scholar 

  13. I.C. Chen, O. Kuksenok, V.V. Yashin, R.M. Moslin, A.C. Balazs, K.J. Van Vliet, Soft Matter 7, 3141 (2011).

    Article  ADS  Google Scholar 

  14. Y. Hara, R. Yoshida, J. Phys. Chem. B 112, 8427 (2008).

    Article  Google Scholar 

  15. V.V. Yashin, A.C. Balazs, Macromolecules. 39, 2024 (2006).

    Article  ADS  Google Scholar 

  16. I.C. Chen, O. Kuksenok, V.V. Yashin, A.C. Balazs, K.J. Van Vliet, Adv. Funct. Mater. 22, 2535 (2012).

    Article  Google Scholar 

  17. R. Yoshida, Y. Murase, Colloid Surface B 99, 60 (2012).

    Article  Google Scholar 

  18. D. Kim, K.J. Kim, Y. Tak, D. Pugal, I.S. Park, Appl. Phys. Lett. 90, 184104 (2007).

    Article  ADS  Google Scholar 

  19. S. Maeda, Y. Hara, R. Yoshida, S. Hashimoto, Adv. Robotics 22, 1329 (2008).

    Article  Google Scholar 

  20. R. Yoshida, T. Sakai, Y. Hara, S. Maeda, S. Hashimoto, D. Suzuki, Y. Murase, J. Control Release. 140, 186 (2009).

    Article  Google Scholar 

  21. S. Maeda, S. Hashimoto, Macromol. Chem. Phys. 214, 343 (2013).

    Article  Google Scholar 

  22. V.V. Yashin, S. Suzuki, R. Yoshida, A.C. Balazs, J. Mater. Chem. 22, 13625 (2012).

    Article  Google Scholar 

  23. P. Wang, J. Zhou, M. Li, F. Xu, T.J. Lu, Sci. China E 53, 1862 (2010).

    Article  MATH  Google Scholar 

  24. V.V. Yashin, A.C. Balazs, Science 314, 798 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  25. O. Kuksenok, V.V. Yashin, A.C. Balazs, Soft Matter 3, 1138 (2007).

    Article  ADS  Google Scholar 

  26. O. Kuksenok, V.V. Yashin, A.C. Balazs, Soft Matter 5, 1835 (2009).

    Article  ADS  Google Scholar 

  27. W. Hong, X. Zhao, J. Zhou, Z. Suo, J. Mech. Phys. Solids 56, 1779 (2008).

    Article  MATH  ADS  Google Scholar 

  28. V.V. Yashin, A.C. Balazs, J. Chem. Phys. 126, 124707 (2007).

    Article  ADS  Google Scholar 

  29. P.J. Flory, J. Rehner, J. Chem. Phys. 11, 521 (1943).

    Article  ADS  Google Scholar 

  30. P.J. Flory, J. Chem. Phys. 10, 51 (1942).

    Article  ADS  Google Scholar 

  31. M.L. Huggins, J. Chem. Phys. 9, 440 (1941).

    Article  ADS  Google Scholar 

  32. J.J. Tyson, P.C. Fife, J. Chem. Phys. 73, 2224 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  33. R.J. Field, R.M. Noyes, J. Chem. Phys. 60, 1877 (1974).

    Article  ADS  Google Scholar 

  34. J.R. Dormand, P.J. Prince, J. Comput. Appl. Math. 6, 19 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  35. S.N. Ha, Comput. Math. Appl. 42, 1411 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Abbasbandy, Appl. Math. Comput. 145, 887 (2003).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Liu, S., Zhou, J. et al. Kinetic modelling and bifurcation analysis of chemomechanically miniaturized gels under mechanical load. Eur. Phys. J. E 36, 108 (2013). https://doi.org/10.1140/epje/i2013-13108-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13108-x

Keywords

Navigation