Skip to main content
Log in

Brownian dynamics simulations of confined tethered polymers in shear flow: the effect of attractive surfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Coarse grain Brownian dynamics simulations of the bead-spring model are used to investigate the effect of attractive surfaces on the stretching of confined tethered polymers under shear flow. The weak and strong adsorbed regimes have been addressed by means of a coarse grain van der Waals potential to simulate polymer substrate interactions. Different stationary cyclic dynamics are observed upon varying shear flow intensity and surface potential strength. Polymer stretching decreases as increasing the attractive potential strength, breaking down the scaling predictions for non-adsorbed polymers. We found that adsorption is enhanced by the shear flow strength in agreement to simulations of adsorbed non-tethered polymers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell, New York, 1977).

  2. F. Brochard, P.G. de Gennes, J. Chem. Phys. 67, 52 (1977).

    Article  ADS  Google Scholar 

  3. F. Brochard-Wyart, P.G. de Gennes, Europhys. Lett. 23, 105 (1993).

    Article  ADS  Google Scholar 

  4. A. Buguin, F. Brochard-Wyart, Macromolecules 29, 4937 (1996).

    Article  ADS  Google Scholar 

  5. P. Doyle, B. Ladoux, Phys. Rev. Lett. 84, 4769 (2000).

    Article  ADS  Google Scholar 

  6. B. Ladoux, P. Doyle, Europhys. Lett. 52, 511 (2000).

    Article  ADS  Google Scholar 

  7. G. Slater, Y. Gratton, M. Kenward, L. McCormick, F. Tessier, Soft Mater. 2, 155 (2004).

    Article  Google Scholar 

  8. R. Delgado-Buscalioni, Phys. Rev. Lett. 96, 088303 (2006).

    Article  ADS  Google Scholar 

  9. M. Webster, J. Yeomans, J. Chem Phys. 122, 164903 (2005).

    Article  ADS  Google Scholar 

  10. Y. Gratton, G. Slater, Eur. Phys. J. E 17, 455 (2005).

    Article  Google Scholar 

  11. G.O. Ibáñez-García, S. Hanna, Soft Matter 5, 4464 (2009).

    Article  ADS  Google Scholar 

  12. Ch.A. Lueth, E. Shaqfeh, Macromolecules 42, 9170 (2009).

    Article  ADS  Google Scholar 

  13. Y. Zhang, A. Donev, T. Weisgraber, B. Alder, M. Graham, J.J. de Pablo, J. Chem. Phys. 130, 234902 (2009).

    Article  ADS  Google Scholar 

  14. S. Litvinov, X.Y. Hu, N.A. Adams, J. Phys.: Condens. Matter 23, 184118 (2011).

    Article  ADS  Google Scholar 

  15. F. Kuhner, Langmuir 22, 1180 (2006).

    Article  Google Scholar 

  16. S. Morris, S. Hanna, M. Miles, Nanotechnology 15, 1296 (2004).

    Article  ADS  Google Scholar 

  17. M. Antognozzi, A. Wotherspoon, J. Hayes, M. Miles, Nanotechnology 17, 0957 (2006).

    Article  Google Scholar 

  18. S. Iwao, S. Granick, Langmuir 14, 4266 (1998).

    Article  Google Scholar 

  19. M. Cohen, M. Stuart, Annu. Rev. Mater. Sci. 26, 463 (1996).

    Article  ADS  Google Scholar 

  20. A. Panwar, S. Kumar, J. Chem. Phys. 122, 154902 (2005).

    Article  ADS  Google Scholar 

  21. N. Hoda, S. Kumar, J. Chem. Phys. 128, 164907 (2008).

    Article  ADS  Google Scholar 

  22. G.-L. He, R. Messina, H. Lowen, A. Kirly, V. Bocharova, M. Stammb, Soft Matter 6, 3014 (2009).

    Article  ADS  Google Scholar 

  23. G.-L. He, R. Messina, H. Lowen, J. Chem. Phys. 132, 124903 (2010).

    Article  ADS  Google Scholar 

  24. A. Serr, R. Netz, Europhys. Lett. 78, 68006 (2007).

    Article  ADS  Google Scholar 

  25. R. Netz, D. Andelman, Phys. Rep. 389, 1 (2004).

    Article  Google Scholar 

  26. G. Fleer, Polymers at Interfaces (Chapman&Hall, New York, 1993).

  27. H. Schneider, P. Frantz, S. Granick, Langmuir 12, 994 (1996).

    Article  Google Scholar 

  28. R. Descas, J. Sommer, A. Blumen, J. Chem. Phys. 120, 8831 (2004).

    Article  ADS  Google Scholar 

  29. K. De Bell, T. Lookman, Rev. Mod. Phys. 150, 832 (2004).

    Google Scholar 

  30. E. Eisenriegler, Polymers near Surfaces (World Scientific, River Edge, New York, 1993).

  31. R. Descas, J. Sommer, A. Blumen, J. Chem. Phys. 124, 094701 (2006).

    Article  ADS  Google Scholar 

  32. Y. Marciano, F. Brochard-Wyart, Macromolecules 28, 985 (1995).

    Article  ADS  Google Scholar 

  33. A. Serr, C. Sendner, F. Muller, T.R. Einert, R. Netz, EPL. 92, 39002 (2010).

    Article  Google Scholar 

  34. P. Flory, Statistical Mechanics of Chain Molecules (Oxford University Press, New York, 1989).

  35. L. Li, R. Larson, J. Rheol. 44, 291 (2000).

    Article  ADS  Google Scholar 

  36. R. Larson, J. Rheol. 49, 1 (2005).

    Article  ADS  Google Scholar 

  37. H.R. Warner Jr., Ind. Eng. Chem. Fund. 11, 379 (1972).

    Article  MathSciNet  Google Scholar 

  38. C.W. Gardiner, Handbook of Stochastic Methods (Springer, New York, 1985).

  39. R.M. Jendrejack, J.J. de Pablo, M.D. Graham, J. Chem. Phys. 116, 7752 (2002).

    Article  ADS  Google Scholar 

  40. F. Luettmer-Strathmann, F. Rampf, W. Paul, K. Binder, J. Chem. Phys. 128, 064903 (2008).

    Article  ADS  Google Scholar 

  41. E. Eisenriegler, K. Kremer, K. Binder, J. Chem. Phys. 7, 12 (1982).

    Google Scholar 

  42. B. Bird, C. Curtis, C. Armstrong, O. Hassager, Dynamics of polymeric liquids: Volume II Kinetic Theory (Wiley-Interscience and Sons, New York, 1987).

  43. Ch.M. Chroeder, R.E. Teixiera, E. Shaqfeh, S. Chu, Phys. Rev. Lett. 95, 018301 (2005).

    Article  ADS  Google Scholar 

  44. G.O. Ibáñez-García, Ph.D Thesis (University of Bristol, 2010).

  45. G.O. Ibáñez-García, in preparation.

  46. J. Hatfield, S. Quake, Phys Rev. Let. 82, 3548 (1999).

    Article  ADS  Google Scholar 

  47. R. Delgado-Buscalioni, P.V. Coveney, Physica A 362, 30 (2006).

    Article  ADS  Google Scholar 

  48. F. Kunher, M. Erdmann, H. Gaub, Phys. Rev. Lett. 97, 218301 (2006).

    Article  ADS  Google Scholar 

  49. H. Li, Ch.Qian, M.b. Luo, J. Appl. Polym. Sci. 124, 282 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel O. Ibáñez-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibáñez-García, G.O., Goldstein, P. & Hanna, S. Brownian dynamics simulations of confined tethered polymers in shear flow: the effect of attractive surfaces. Eur. Phys. J. E 36, 56 (2013). https://doi.org/10.1140/epje/i2013-13056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13056-5

Keywords

Navigation