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Abstract. The average shape of the trefoil knot tied on a floppy, hard rope subject to thermal fluctuations
has been determined. The fluctuations of the shape of knots were performed by random bending. As a result
of the changing shape procedure large sets of deformed conformations of the initial knot were obtained.
Afterwards, these sets were subject to the shape-fitting procedure. It has been found that the conformation
is different from the ideal conformation of the knot.

1 Introduction

Suppose a closed knot has been tied on a piece of a rope
subject to thermal fluctuations. The rope has such a
length that thermal fluctuations constantly change the
shape of the knot. In terms of the physics of polymers,
this model describes a knotted ring polymer submerged
in a thermal bath. An essential question arises: What is
the average shape of the fluctuating knot? The answer to
this question depends both on the physical properties of
the rope in which the knot is tied and on what we mean
by “the average shape”.

In the simplest case studied by Millet et al., see ref. [1],
the “rope” is just six infinitely thin and stiff segments of
equal length connected with each other into a hexagonal
trefoil knot. The segments are connected in such a man-
ner that no energy is needed to change the angles of the
hexagon. Do the thermal fluctuations of such hexagonal
knots cause them to explore the whole accessible space
of conformations? Obviously, the space is different when
the hexagon is knotted and when it is unknotted. Steric
hindrances stemming from the impenetrability of the stiff
segments do not allow the hexagon to change its topology.
Thus, when it is initially unknotted it remains unknotted
all the time; when it is knotted, it remains knotted all the
time. Let us remind here that the knot in question is the
trefoil. Results of the study described in ref. [1] concern-
ing the knotted hexagons are relevant to the results of our
study, thus, let us concentrate on them. The exploration
of the space of the knotted conformations was achieved in
ref. [1], not by modifying the shape of the hexagon but
by a multiple creation using the hedgehog method. It is
important to remember that the trefoil knot is chiral, i.e.
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it has left- and right-handed forms. Thermal fluctuations
of the knot tied on an impenetrable rope are not able
to change its chirality type: for instance, a right-handed
trefoil will always remain right-handed. Hexagonal right-
handed trefoil knots created via the hedgehog procedure
were translated in such a manner that their centre of mass
was shifted to the origin of the (x, y, z) Cartesian reference
frame. Then the knots were apropriately rotated. The aim
was to orient eigenvectors of their gyration tensor along
the axes of the reference frame. The longest gyration ten-
sor eigenvector was oriented always along the x-axis. The
middle eigenvector of the tensor was oriented along the
y-axis. Consequently, since the eigenvectors of the tensor
are orthogonal, the shortest gyration tensor eigenvector
was oriented along the z-axis of the reference frame. The
essential detail of the procedure was what the authors call
symmetry breaking alignment, see [1]. Generating a large
number of knots oriented in such a manner the authors
obtained a 3D cloud of points and they analysed its spa-
tial density. The analysis, see fig. 4(b) in ref. [1] reveals
the chiral nature of the knot.

The question concerning the average shape of a fluc-
tuating knot, for knots tied on an elastic rope, has been
recently asked and answered by Saka and Takano [2]. The
answer that they provide depends not only on the details
of the interaction potentials defining the elastic properties
of the model rope they used, but also on the temperature
of the thermal bath within which the simulated knot was
submerged. Saka and Takano performed their simulations
for a particular interaction potential and at a particular
temperature. It is difficult to draw more general conclu-
sions from a single such study. There exists, however, a
particular type of model rope for which the temperature
of the thermal bath becomes irrelevant. This model rope,
called perfect rope, being perfectly floppy is at the same
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time perfectly hard [3]. The rope is perfectly hard if the
shapes of its perpendicular sections do not change even
when the rope is squeezed. The sections of the perfect
rope are circular. They can be thus seen as hard disks.
Being hard they not only cannot be deformed but also
they are not allowed to overlap. It is essential to notice
that overlaps of the section disks can occur not only when
two axially distant points of the rope are brought too close
together, i.e. to a distance smaller than the diameter D of
the rope, but also when the rope is bent too much. In the
first case the doubly critical self-distance becomes smaller
than D. In the second case the local curvature becomes
larger than 2/D = 1/R, where R = D/2 is the radius of
the circular sections of the rope. The perfect rope is also
perfectly floppy: as long as the local curvature of the rope
axis is smaller than 1/R, bending it costs no energy. Bend-
ing the perfect rope above this limit is prohibited. The
above-described physical properties of the perfect rope im-
ply that the potential energy of the knot tied on such a
rope is always equal to zero. As a result, all legitimate
conformations of the knot are equally probable. The av-
erage shape of the knot tied on the perfect rope depends
solely on the length of the rope in which it has been tied,
but it is temperature independent: a higher temperature
makes the knot fluctuate faster, but the space of its ac-
cessible conformations and, thus, its average shape remain
the same. Knots tied on the perfect rope can be seen as
reference points in the physical theory of thick knots tied
on ropes with various physical properties. It is our aim to
find out, quantitatively, how their average shape changes
with the length of the rope on which they have been tied.

As Saka and Takano have found, the trefoil knot tied
on the elastic rope subject to thermal fluctuations be-
comes asymmetrical: the threefold symmetry character-
istic of its tight conformation [4,5] vanishes —one of its
three foils becomes larger than the two other foils. One
can arrive at this conclusion through an analysis of the
results of studies which localise the knotted region within
knots tied on long polymer filaments. It has been convinc-
ingly demonstrated that thermal fluctuations “squeeze”
the knot into knotted polymer rings [6–12]. The knots
considered in those papers are either based on the lattice
model or regular chains polymer in two or three dimen-
sions. Interesting study was carried out for knots tied on
the granular chains [13] and knots tied on charged poly-
mers [14]. Thus, one can predict that in the case of the
closed trefoil knot tied on a long piece of a floppy rope one
of its foils should be on average longer than the two other
foils. It is interesting to ask if this behaviour becomes vis-
ible also in the almost tight trefoil knots, i.e. if the almost
tight knots lose the threefold symmetry axis present in
the tightest trefoil. We will confirm the asymmetry of the
average shape but also quantitatively determine the ge-
ometrical parameters of the changing average shape, in
particular its curvature and torsion profiles. We will give
a simple criterion allowing one to identify all three foils of
the knot. This has allowed us to precisely measure their
lengths and determine how the lengths change with the
increasing length of the rope in which the knot had been
tied.

2 The simulation method

2.1 Discrete representation of knots tied on the
perfect rope

Knots tied on the perfect rope are smooth: their tangent
vector is continuous. For obvious reasons, in numerical
simulations we deal with polygonal knots for which the
tangent vector becomes discontinuous at those of its ver-
tices which are the meeting points of non-collinear seg-
ments. The relation between the polygonal knots that
we numerically process and the smooth knots, which the
polygonal knots aim to represent, is thus essential. In what
follows we shall discuss it using as an example the tight-
est of all trefoil knots tied on the perfect rope of radius
R = 1 described parametrically by a set of three func-
tions. Construction details of the polygonal knots Kpoly

are described in previous publications [3]. Using the Raw-
don method it is possible to inscribe a curvilinear knot
into a polygonal knot [5].

To make the considerations presented below compati-
ble with the considerations described by Saka and Takano,
we decided to use their notation. A continuous closed knot
K is a self-avoiding curve in the 3-dimensional space. The
curve is represented in numerical simulations by the set of
N equidistant points Pi, i = 0, 1, . . . , N − 1, which can be
seen as vertices of an equilateral polygon Kpoly. The poly-
gon representing in our simulations knot K will be denoted
by C. Obviously, for a given continuous knot there are an
infinite number of polygonal representations, depending
on where we place the first vertex in the knot. When start-
ing a simulation we just choose one of them at random.
The results of the study do not depend on this choice. In
a given Cartesian coordinate frame each of the vertices of
C is indicated by a position vector Ri, i = 0, 1, . . . , N −1.
Thus, any conformation C of the simulated knot is repre-
sented by the set of N vectors,

C = {R0, R1, R2, . . . , RN−1} . (1)

In view of the assumed equilaterality of C, distances be-
tween consecutive points are identical,

‖Ri+1 − Ri‖ = dl, i = 0, 1, 2, . . . , N − 1. (2)

Since the knot is closed,

RN ≡ R0. (3)

The polygonal length of the knot,

L(0)poly = Ndl. (4)

All procedures, except the final averaging procedure, that
we apply in our simulations keep this value constant. As a
result, all conformations of the fluctuating knot obtained
from our simulation are equilateral polygons of constant
length. Let us emphasise here, that although, for the sake
of brevity, we refer to C as the polygonal knot, we have
in mind a polygonal knot whose vertices are surrounded
by hard spheres of unit radius. This is essential, since the



Eur. Phys. J. E (2013) 36: 47 Page 3 of 6

hard spheres surrounding the vertices of C limit in an
essential manner the freedom of its fluctuations. Axially
distant vertices of such a knot cannot come closer to each
other than D = 2R and the bending angles within the
knot cannot be larger than

Θmax = 2arcsin
(

dl

2R

)
. (5)

Let us describe in more detail the knots the fluctua-
tions of which we have simulated. There were 24 of them.
All of them were trefoils, but they differed in their length.
Thinking about trefoils tied on the perfect rope we come
to the conclusion that there exists a particular trefoil that
can be tied on a piece of the perfect rope of a minimum
length. The tightest trefoil is our starting point. To be
more precise, our starting point is the tightest polygo-
nal knot whose vertices are surrounded by spheres of unit
radius. The knot is tight, i.e. the spheres surrounding its
vertices stay in touch. As a result, its shape is well defined.
The knot is locked; it has no freedom to fluctuate. To allow
the fluctuations the knot must be made longer. We used
polygonal trefoils of 24 different lengths L(0)poly > Ltight,
where Ltight is the length of the tightest polygonal knot.
For simplicity, L denotes in what follows the polygonal
length Lpoly of the knots. To keep the precision of the
discretisation of all analysed knots at the same level, the
number N of the vertices was appropriately increased with
the length L(0)poly of the simulated knot. As a result, the
segment length dl in all simulated knots has always almost
the same value. The tightest trefoil knot had its centre of
mass in the origin of the (x, y, z) reference frame and its
threefold axis was oriented along the z-axis.

2.2 Elementary motions changing the shape of the
knot

What we are interested in are not the thermal motions of
the knot as a whole, i.e. its Brownian-motion–like trans-
lations and rotations, but the thermal fluctuations of its
shape. Consequently, the elementary motions applied in
the simulation should change the shape of the knot but
not either translate or rotate it.

Let C(0) be one the 24 initial conformations of the
processed knot. Obviously, as explained above, its length
L(0) > Ltight. In what follows, the position of its vertices
will be denoted as Ri(0). The conformation was subject
to a sequence of n elementary motions aimed at changing
its shape. Each of the elementary motions was performed
as follows:
1) A pair of vertices (i, j), where |j − i| > 1, was chosen

at random. The pair of vertices was dividing the knot
into two (as a rule, unequal) pieces and it was defining
an axis O passing through both of them (see fig. 1).

2) The smaller piece of the knot located between the cho-
sen vertices was rotated around the axis O by a small
angle α chosen at random from the interval (0, αmax).
The sense of the rotation depended on the order of
the chosen indexes i, j, e.g., choices (2, 10) and (10, 2)
meant different senses of the rotation.

Fig. 1. The idea of the bending procedure —the most essen-
tial element of elementary moves changing the shape of the
fluctuating knot.

The elementary move defined above was accepted
when the conformation obtained by its application was
free from overlaps, where by overlaps we understand both
the situations when two of the unit spheres surrounding
axially distant vertices of the knot become closer than
D = 2R and when any of the bending angles becomes
larger than Θmax. When either of the two conditions was
broken, the elementary move was cancelled and a new one
was generated. The maximum rotation angle, αmax, was
set to such an experimentally determined value, at which
about 80% of elementary moves were becoming accepted.
Let us describe now how from the initial conformation
C(0) of the fluctuating knot its next conformation, C(1)
was obtained.

There exists a weak point in our work: in contrast to
the hedgehog algorithm used in ref. [1], we are not able to
prove that the elementary moves which we are using are
ergodic.

The sequence of nb = 1000 of the bending moves
performed, according to the above-described procedure,
changes the shape of the initial conformation leaving the
position of its centre of mass intact. Final positions of the
vertices of the knot are denoted by Ri(1). Thus, vectors
Ri(1), i = 0, 1, . . . , N − 1 define the new conformation
of the knot; we denote it by C(1). Consecutive confor-
mations C(2), C(3), . . . , C(M) are obtained in the same
manner, i.e. the next conformation is obtained from the
previous one by subjecting the latter to the sequence of
nb shape-changing motions and the appropriate correc-
tion of the position of the centre of mass. The relation
between consecutive conformations of the sequence can
be thus written as

C(m + 1) = B(C(m)), (6)

where B denotes the effective procedure that randomly
changes the knot shape without changing the position of
its centre of mass. The sequence C(1), C(2), . . . , C(M) of
the recorded conformations of the fluctuating knot we de-
note by C. Thus,

C = {C(1), C(2), . . . , C(M)} . (7)
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Fig. 2. Conformations of the fluctuating trefoil knot be-
fore (a) and after (b) the shape fitting procedure. Picture (a)
presents 100 conformations from the initial set C, while pic-
ture (b) shows the same conformations after the appropri-
ate re-orientations determined via the shape-fitting procedure.
The appropriately re-oriented and re-indexed conformations
are gathered in set C′. It is the averaging of the positions of
their vertices that provides the positions of the average shape
conformation Cav. It is obvious that the average shape confor-
mation cannot be found by the direct averaging of the vertex
positions of original conformations shown in (a), but it can be
found using conformations shown in (b).

The problem that we now face is: how to determine
the average shape of all conformations gathered in C? The
problem is by no means trivial. The method that we have
arrived at is, as we have found, analogous to that applied
by Saka and Takano [2]. It consists of two steps. In the
first step, the conformations gathered in C are fitted to
each other via appropriate rotations and re-indexing, so
that the mean square distance between all the conforma-
tions reaches its minimum. The fitting procedure is similar
to the procedure applied by Amzallag et al. [15]. The con-
formations obtained after the application of this fitting
procedure are gathered in a new set denoted by C′. In the
last step the average of all conformations belonging to C′

is determined. It is this shape that can be seen as the
average shape of the fluctuating knot.

The efficiency of the shape-fitting procedure is illus-
trated in fig. 2. On the left we present 100 conformations
belonging to the initial set C. As one can see their aver-
age shape is by no means visible here. However, as shown
in fig. 2(b), when the same conformations are appro-
priately re-oriented (the re-oriented conformations were
taken from set C′) the average shape of the fluctuating
knot becomes well visible even to the naked eye. In par-
ticular, one can easily see that one of the knot foils is
larger than the two other foils.

2.3 The average shape of the fluctuating trefoil knot

The trefoil knots of 24 lengths have been subject to fluctu-
ations. Initial conformations of the knots were obtained by
an appropriate scaling of the tightest knot, so that their
lengths L(0) were equal,

L(0) = (ε + 1)Ltight, (8)

where 0 < ε ≤ 1 is the scaling factor and Ltight is the
length of the tightest trefoil knot, Ltight = 32.74. Let us

Fig. 3. Five of the 24 average shape conformations found for
the thermally fluctuating trefoil knots tied on the perfect rope
of an increasing length.

recall that making the knot longer, we were appropriately
increasing the number N of its vertices, so that the length
dl of its segments (distances between consecutive vertices)
was kept approximately constant.

Summarising the whole procedure, let us state that
each of the 24 knots was subject to n = 3 · 107 elementary
bending moves. Conformations of the fluctuating knots
were recorded every nb = 103 move. Thus, for each of the
knots, a set C = {C(1), C(2), . . . , C(M)} of M = 3 · 104

conformations was created. Subsequently, the conforma-
tions were rotated and re-indexed in such a manner that
they became as close to each other as possible (fig. 2).
The set of the re-oriented and re-indexed conformations
was denoted by C′. Only then, the average conformation
of the fluctuating knot was determined.

Figure 3 presents the average shapes of 5 of the 24
trefoil knots subject to fluctuations. It is clearly seen that
as the fluctuating trefoil knot becomes longer its average
shape changes in a well-defined manner: the lengths of all
three foils of the knot become different. In general, the
fluctuating trefoil knot loses in its average conformation
all of its symmetry elements, which are characteristic to
the tightest conformation.

2.4 Evolution of the lengths of the foils

Let L(0) be the length of the trefoil knot subject to fluc-
tuations. Let us remind that L(0) is not the length of the
tightest trefoil knot, but the length of the tightest tre-
foil knot scaled up by factor ε + 1. The initial knot is
equilateral. The bending moves used to simulate the ther-
mal fluctuations do not change its basic properties, i.e. all
conformations gathered in the C set are also equilateral
and their length equals L(0). Obviously, all of the above-
described rotations and re-indexing aimed at making the
conformations as congruent to each other as possible do
not change the properties either. However, this particular
conformation that defines the average shape of the fluctu-
ating knot, found by calculating average positions of the
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Fig. 4. Dependence of the shortening parameter δ on the ex-
cess length parameter ε. See text.

vertices of all conformations belonging to the C′ set ob-
tained at the end of the congruence seeking procedure,
is no more equilateral and its length Lav is smaller than
L(0). Let us define a variable that reflects this shortening,

δ =
L(0) − Lav

L(0)
. (9)

Figure 4 presents the dependence of this variable on
the value of the ε parameter that describes the amount of
the freedom of the knot to fluctuate.

Lav is the length of the average shape conformation of
the fluctuating knot. It is interesting to determine how the
length is divided between the tree foils of the knot. Obvi-
ously, to divide Lav into the three parts that would corre-
spond to the three foils, one needs to define an algorithm
of this division. The most natural manner is to find those
pairs of points within the knot at which the self-distance
of the knotted rope reaches its minima. There are three
such pairs: (P1, P2), (P3, P4), (P5, P6). The arc length dis-
tances lav1 , lav2 , lav3 between points belonging to the pairs
can be seen as the lengths of three foils (F av

1 , F av
2 , F av

3 )
of the analysed knot. If the average shape conformation
had the threefold symmetry characteristic of the tightest
knot, all the foils would be of the same length. Looking at
fig. 5 we see that this is certainly not the case: all three
foils have a different length.

2.5 Evolution of the curvature and torsion profiles

The curvature profile of the tightest trefoil knot was pre-
sented and discussed in ref. [5]. The most interesting land-
marks of the profile were the double peaks, perfectly flat
at their tops because they were cut off by the maximum
curvature limit. For knots tied on hard, circular ropes the
maximum curvature κmax = 2/D, where D is the diameter
of the rope. Peaks within each of the double peaks were
separated by a distinct valley. See fig. 12 in ref. [5]. Mak-
ing the knot loose changes significantly this curvature pro-
file. Already a very small departure, measured here by the
value of the ε parameter, makes the double peaks disap-
pear. The valley, however, remains. See fig. 6. As a result,
the curvature profile of the average shape conformation

Fig. 5. Lengths of the knot foils versus the elongation param-
eter ε. At ε = 0 the knot is closely packed and all three leaves
are of identical length.

Fig. 6. Curvature within the average shape conformations ob-
tained for knots tied on the rope of increasing length. The first,
remarkably different plot was obtained for the initial tightest
conformation. The conformation has no freedom to change its
shape.

can be described as an almost flat plateau with three val-
leys. The arc length distances between consecutive valleys
are not identical. They can be also used to determine the
length of the knot foils. As the knot becomes longer, the
valleys become broader and the land between them cannot
be considered as a plateau.
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3 Conclusions and discussion

Loosening the tightest trefoil knot tied on the hard, floppy
rope allows it to fluctuate. The conformation of such a
fluctuating knot changes constantly: it is seen not only to
change its shape but it seems also to be rotating. The rota-
tion is but an illusion, since tracing the position of a chosen
vertex we shall not see it rotating. A direct averaging of
the vertices positions would lead in such circumstances to
the disappearance of the knot. However, as we have shown,
properly designed procedures allow one to remove the ap-
parent rotation and make the consecutive conformations
as congruent to each other as possible. Averaging the po-
sitions of the vertices of such appropriately oriented and
indexed conformations reveals the average shape of the
fluctuating knot. The most essential conclusion is that the
average shape conformation lacks all symmetry elements
characteristic to the tightest trefoil knot. All three foils of
the knot are of different length. Since the knot subject to
fluctuations was tied on the perfectly floppy, hard rope,
the average shape of it can be seen as reference shape for
knots tied on ropes of different elastic properties.

Results of our study can be confronted also with results
of a recent study performed by Millet et al., see ref. [1].
Knots, that they subject to thermal fluctuations, were also
equilateral, but in contrast to our study their six segments
were infinitely thin. Thus, their knots were not sensitive to
the segment length and their tightest conformation were
not well defined. In spite of the essential differences be-
tween our studies there is one conclusion that proves to
be common: all three axes of the average ellipsoid of iner-
tia are different.

Results presented in this paper are qualitatively differ-
ent from the results obtained by Saka and Takano [2], who
used a model based on a polymer with N segments. This
model postulates the existence of two kinds of potentials:
the Lennard-Jones potential (repulsive interactions be-
tween segments) and a finitely extensible nonlinear elastic
potential (attractive interactions between neighboring
segments). Our model, based on the perfect rope, does not
assume any soft interactions between the vertices or other
parts of knots. The only interaction present in our model
is the hard interaction which does not allow for existence
of overlaps. The average shapes of Saka’s knots seem to
be symmetrical around the twofold axis passing through
the longest foil, while our average conformations do not
have this symmetry. Consequently, the two shorter foils
of the SK average conformations are of identical length,

while the foils of our average conformations are all of dif-
ferent length. It seems improbable to us that the qual-
itative difference is a result of the different interactions
within the SK and our knots. Most probably, the difference
stems from imperfections of the shape-fitting procedure
applied by Saka and Takano. This needs to be verified.
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