Skip to main content
Log in

The origin of granular convection in vertically vibrated particle beds: The differential shear flow field

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

This paper investigates the particle scale dynamics of granular convection in vertically vibrated granular beds. The onset of the convection is found to coincide with the noticeable particle transverse migrations from the side walls towards the centre of the bed, which only take place in the wake of the gravity wave front dividing the upward moving particles and the falling ones. The mechanism driving the particle inward flows and thus sustaining the complete convection rolls can be understood in light of a convection model based on void penetration. This stochastic convection model reveals that the underlying driving force is a distinctive differential shear flow field arising from the combined effect of frictional holdback by the walls and the downward pull of gravity. The changes of the convection pattern with inceasing acceleration amplitude, in terms of the convection strength and the thickness of the bottom of the convection rolls, can be accounted for by this model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Matas, J. Uehara, R. Behringer, Eur. Phys. J. E 25, 431 (2008)

    Article  Google Scholar 

  2. I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  3. D.A. Huerta, J.C. Ruiz-Suárez, Phys. Rev. Lett. 92, 114301 (2004)

    Article  ADS  Google Scholar 

  4. M. Rouijaa, C. Krülle, I. Rehberg, R. Grochowski, P. Walzel, Chem. Eng. Tech. 28, 41 (2005)

    Article  Google Scholar 

  5. K.M. Aoki, T. Akiyama, K. Yamamoto, T. Yoshikawa, Europhys. Lett. 40, 159 (1997)

    Article  ADS  Google Scholar 

  6. D.W. Wang, Y.C. Chou, T.M. Hong, Europhys. Lett. 35, 333 (1996)

    Article  ADS  Google Scholar 

  7. J. Rajchenbach, Europhys. Lett. 16, 149 (1991)

    Article  ADS  Google Scholar 

  8. S.-S. Hsiau, C.-C. Liao, P.-Y. Sheng, S.-C. Tai, Exp. Fluid. 51, 795 (2011)

    Article  Google Scholar 

  9. C. Laroche, S. Douady, S. Fauve, J. Phys. (Paris) 50, 699 (1989)

    Article  Google Scholar 

  10. S. Luding, E. Clément, A. Blumen, J. Rajchenbach, J. Duran, Phys. Rev. E 50, R1762 (1994)

    Article  ADS  Google Scholar 

  11. H.K. Pak, E. Van Doorn, R.P. Behringer, Phys. Rev. Lett. 74, 4643 (1995)

    Article  ADS  Google Scholar 

  12. E.v. Doorn, R.P. Behringer, Europhys. Lett. 40, 387 (1997)

    Article  ADS  Google Scholar 

  13. J.B. Knight, Phys. Rev. E 55, 6016 (1997)

    Article  ADS  Google Scholar 

  14. T. Shinbrot, D. Khakhar, J.J. McCarthy, J.M. Ottino, Phys. Rev. Lett. 79, 829 (1997)

    Article  ADS  Google Scholar 

  15. Troy Shinbrot, D.V. Khakhar, J.J. McCarthy, J.M. Ottino, Phys. Rev. E 55, 6121 (1997)

    Article  ADS  Google Scholar 

  16. T. Akiyama, K.M. Aoki, K. Yamamoto, T. Yoshikawa, Granular Matter 1, 15 (1998)

    Article  MATH  Google Scholar 

  17. G.M. Rodríguez-Liñán, Y. Nahmad-Molinari, Phys. Rev. E 73, 011302 (2006)

    Article  ADS  Google Scholar 

  18. S. Klongboonjit, C.S. Campbell, Phys. Fluids 20, 103303 (2008)

    Article  ADS  Google Scholar 

  19. M. Majid, P. Walzel, Powder Tech. 192, 311 (2009)

    Article  Google Scholar 

  20. R.D. Wildman, J.M. Huntley, D.J. Parker, Phys. Rev. Lett. 86, 3304 (2001)

    Article  ADS  Google Scholar 

  21. J.M. Pastor, D. Maza, I. Zuriguel, A. Garcimartin, J.-F.Boudet, Physica D 232, 128 (2007)

    Article  ADS  Google Scholar 

  22. D.C. Hong, S. Yue, Phys. Rev. E 58, 4763 (1998)

    Article  ADS  Google Scholar 

  23. J.A.C. Gallas, H.J. Herrmann, S. Sokołowski, Phys. Stat. Mech. Appl. 189, 437 (1992)

    Article  Google Scholar 

  24. L. Jysoo, J. Phys. A: Math. Gen. 27, L257 (1994)

    Article  Google Scholar 

  25. T. Ohtsuki, T. Ohsawa, J. Phys. Soc. Jpn. 72, 1963 (2003)

    Article  ADS  MATH  Google Scholar 

  26. M.Z. Bazant, Mech. Mater. 38, 717 (2004)

    Article  Google Scholar 

  27. J. Choi, A. Kudrolli, R.R. Rosales, M.Z. Bazant, Phys. Rev. Lett. 92, 174301 (2004)

    Article  ADS  Google Scholar 

  28. J.A. Perez, S.B. Kachuck, G.A. Voth, Phys. Rev. E 78, 041309 (2008)

    Article  ADS  Google Scholar 

  29. J.B. Knight, E.E. Ehrichs, V.Y. Kuperman, J.K. Flint, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 54, 5726 (1996)

    Article  ADS  Google Scholar 

  30. R.D. Wildman, J.M. Huntley, D.J. Parker, Phys. Rev. E 63, 061311 (2001)

    Article  ADS  Google Scholar 

  31. S.S. Hsiau, C.H. Chen, Powder Technol. 111, 210 (2000)

    Article  Google Scholar 

  32. G.A. Voth, J.A. Perez, R. Son, in Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media Golden (Colorado) 2009 (American Institute of Physics)

  33. S. Douany, S. Fauve, C. Laroche, Europhys. Lett. 8, 621 (1989)

    Article  ADS  Google Scholar 

  34. A. Ugawa, O. Sano, J. Phys. Soc. Jpn. 72, 1390 (2003)

    Article  ADS  Google Scholar 

  35. V. Kamenetsky, A. Goldshtein, M. Shapiro, D. Degani, Phys. Fluids 12, 3036 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Bougie, S.J. Moon, J.B. Swift, H.L. Swinney, Phys. Rev. E 66, 051301 (2002)

    Article  ADS  Google Scholar 

  37. If we consider more general particle/void packing configuration as shown in fig. 5(a) where neigboring voids in six directions rather than four directions as shown in fig. 5(c) are available to be filled, the ratio of the probability of the reference particle migrating rightward, $P_{\ab{above~right}}$ and $P_{\ab{below~right}}$ combined, and that of migrating leftward, $P_{\ab{above~left}}$ and $P_{\ab{below~left}}$ combined, remains the same as in the scenerio in fig. 5(c). The ratio of $P_{\ab{above~right}}$ and $P_{\ab{below~left}}$ is proporitonal to $|v_{i-1}|/|v_i|$ identical to the ratio of $P_{\ab{below~right}}$ and $P_{\ab{above~left}}$ considered in sect. 4, thus our conclusion holds after the inclusion of $P_{\ab{above~right}}$ and $P_{\ab{below~left}}$ while the absolute probability of the reference particle migrating rightward increases

  38. E.L. Grossman, Phys. Rev. E 56, 3290 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, K., Zheng, Y., Fan, B. et al. The origin of granular convection in vertically vibrated particle beds: The differential shear flow field. Eur. Phys. J. E 36, 8 (2013). https://doi.org/10.1140/epje/i2013-13008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13008-1

Keywords

Navigation