Skip to main content
Log in

Restructuring of colloidal aggregates in shear flow

Coupling interparticle contact models with Stokesian dynamics

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A method to couple interparticle contact models with Stokesian dynamics (SD) is introduced to simulate colloidal aggregates under flow conditions. The contact model mimics both the elastic and plastic behavior of the cohesive connections between particles within clusters. Owing to this, clusters can maintain their structures under low stress while restructuring or even breakage may occur under sufficiently high stress conditions. SD is an efficient method to deal with the long-ranged and many-body nature of hydrodynamic interactions for low Reynolds number flows. By using such a coupled model, the restructuring of colloidal aggregates under shear flows with stepwise increasing shear rates was studied. Irreversible compaction occurs due to the increase of hydrodynamic stress on clusters. Results show that the greater part of the fractal clusters are compacted to rod-shaped packed structures, while the others show isotropic compaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Larson, The structure and rheology of complex fluids (Oxford University Press, New York & Oxford, 1999)

  2. K.L. Johnson, Contact mechanics (Cambridge University Press, Cambridge, 1985)

  3. M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, P. Meakin, Nature 339, 360 (1989)

    Article  ADS  Google Scholar 

  4. P.J. Lu, E. Zaccarelli, F. Ciulla, A.B. Schofield, F. Sciortino, D.A. Weitz, Nature 453, 499 (2008)

    Article  ADS  Google Scholar 

  5. L.-O. Heim, J. Blum, M. Preuss, H.-J. Butt, Phys. Rev. Lett. 83, 3328 (1999)

    Article  ADS  Google Scholar 

  6. J.P. Pantina, E.M. Furst, Phys. Rev. Lett. 94, 138301 (2005)

    Article  ADS  Google Scholar 

  7. K. Iwashita, M. Oda, J. Eng. Mech. 124, 285 (1998)

    Article  Google Scholar 

  8. D. Kadau, G. Bartels, L. Brendel, D.E. Wolf, Comput. Phys. Commun. 147, 190 (2002)

    Article  ADS  Google Scholar 

  9. C. Dominik, H. Nübold, Icarus 157, 173 (2002)

    Article  ADS  Google Scholar 

  10. K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, Astrophys. J. 661, 320 (2007)

    Article  ADS  Google Scholar 

  11. S. Luding, Granular Matter 10, 235 (2008)

    Article  Google Scholar 

  12. L. Durlofsky, J.F. Brady, G. Bossis, J. Fluid Mech. 180, 21 (1987)

    Article  ADS  Google Scholar 

  13. J.F. Brady, G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988)

    Article  ADS  Google Scholar 

  14. K. Ichiki, J. Fluid Mech. 452, 231 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Smoluchowski, Z. Phys. Chem. 92, 129 (1917)

    Google Scholar 

  16. D.F. Bagster, D. Tomi, Chem. Eng. Sci. 29, 1773 (1974)

    Article  Google Scholar 

  17. P.M. Adler, P.M. Mills, J. Rheol 23, 25 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  18. R.C. Sonntag, W.B. Russel, J. Colloid Interface Sci. 115, 378 (1986)

    Article  ADS  Google Scholar 

  19. A.A. Potanin, J. Colloid Interface Sci. 157, 399 (1993)

    Article  ADS  Google Scholar 

  20. K. Higashitani, K. Iimura, H. Sanda, Chem. Eng. Sci. 56, 2927 (2001)

    Article  Google Scholar 

  21. S. Harada, R. Tanaka, H. Nogami, M. Sawada, J. Colloid Interface Sci. 301, 123 (2006)

    Article  ADS  Google Scholar 

  22. V. Becker, H. Briesen, Phys. Rev. E 78, 061404 (2008)

    Article  ADS  Google Scholar 

  23. V. Becker, E. Schlauch, M. Behr, H. Briesen, J. Colloid Interface Sci. 339, 362 (2009)

    Article  ADS  Google Scholar 

  24. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann, S.E. Pratsinis, J. Colloid Interface Sci. 342, 261 (2010)

    Article  ADS  Google Scholar 

  25. Y.M. Harshe, M. Lattuada, Langmuir 28, 283 (2011)

    Article  Google Scholar 

  26. H. Sakaguchi, E. Ozaki, T. Igarashi, Int. J. Mod. Phys. B 7, 1949 (1993)

    Article  ADS  Google Scholar 

  27. C. Dominik, A.G.G.M. Tielens, Astrophys. J. 480, 647 (1997)

    Article  ADS  Google Scholar 

  28. D. Zhang, W.J. Whiten, Powder Technol. 102, 235 (1999)

    Article  Google Scholar 

  29. J.-Y. Delenne, M.S.E. Youssoufi, F. Cherblanc, J.-C. Bénet, Int. J. Numer. Anal. Meth. Geomech. 28, 1577 (2004)

    Article  Google Scholar 

  30. M.J. Jiang, H.S. Yu, D. Harris, Comput. Geosci. 32, 340 (2005)

    Google Scholar 

  31. J. Tomas, Chem. Eng. Sci. 62, 1997 (2007)

    Article  Google Scholar 

  32. F.A. Gilabert, J.-N. Roux, A. Castellanos, Phys. Rev. E 75, 011303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. T.N. Phung, J.F. Brady, J. Fluid Mech. 313, 181 (1996)

    Article  ADS  Google Scholar 

  34. D.R. Foss, J.F. Brady, J. Fluid Mech. 407, 167 (2000)

    Article  ADS  Google Scholar 

  35. G. Bossis, A. Meunier, J.F. Brady, J. Chem. Phys. 94, 5064 (1991)

    Article  ADS  Google Scholar 

  36. Y.M. Harshe, L. Ehrl, M. Lattuada, J. Colloid Interface Sci. 352, 87 (2010)

    Article  ADS  Google Scholar 

  37. R. Seto, R. Botet, H. Briesen, Phys. Rev. E 84, 041405 (2011)

    Article  ADS  Google Scholar 

  38. K. Ichiki, RYUON---simulation library for Stokesian dynamics, 2006. URL http://ryuon.sourceforge.net

  39. M. Zeidan, B.H. Xu, X. Jia, R.A. Williams, Chem. Eng. Res. Des. 85, 1645 (2007)

    Article  Google Scholar 

  40. V. Becker, H. Briesen, J. Colloid Interface Sci. 346, 32 (2010)

    Article  ADS  Google Scholar 

  41. R. Botet, R. Jullien, M. Kolb, J. Phys. A: Math. Gen. 17, 75 (1984)

    Article  ADS  Google Scholar 

  42. R. Jullien, R. Botet, Aggregation and fractal aggregates (World Scientific, Singapore, 1987)

  43. R. Seto, R. Botet, H. Briesen, Progr. Colloid Polym. Sci. 139, 85 (2012)

    Google Scholar 

  44. R. Wessel, R.C. Ball, Phys. Rev. A 46, 3008 (1992)

    Article  ADS  Google Scholar 

  45. M. Lattuada, H. Wu, M. Morbidelli, J. Colloid Interface Sci. 268, 96 (2003)

    Article  ADS  Google Scholar 

  46. R. Buscall, L.R. White, J. Chem. Soc. Faraday Trans. 83, 873 (1987)

    Article  Google Scholar 

  47. R. Buscall, P.D.A. Mills, J.W. Goodwin, D.W. Lawson, J. Chem. Soc. Faraday Trans. 84, 4249 (1988)

    Article  Google Scholar 

  48. G.B. Jeffery, Proc. R. Soc. London, Ser. A 102, 161 (1922)

    Article  ADS  Google Scholar 

  49. J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Prentice-Hall, Englewood Cliffs, N.J., 1965)

  50. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and selected applications (Butterworth-Heinemann, Boston, 1991)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seto, R., Botet, R., Auernhammer, G.K. et al. Restructuring of colloidal aggregates in shear flow. Eur. Phys. J. E 35, 128 (2012). https://doi.org/10.1140/epje/i2012-12128-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12128-4

Keywords

Navigation