Skip to main content
Log in

Modelling the fluid mechanics of cilia and flagella in reproduction and development

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.I. Taylor, Proc. R. Soc. London, Ser. A, 447 (1951).

  2. W. Engelmann, Über die flimmerbewegung (Engelmann, 1868).

  3. M. Verworn, Pflugers Arch. 48, 149 (1891).

    Article  Google Scholar 

  4. G.H. Parker, J. Exp. Zool. 2, 407 (1905).

    Article  Google Scholar 

  5. J. Gray, Ciliary movement, Cambridge Comparative Physiology (Cambridge University Press, 1928).

  6. G.J. Hancock, Proc. R. Soc. London, Ser. A 217, 96 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Nonaka, Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, N. Hirokawa, Cell 95, 829 (1998).

    Article  Google Scholar 

  8. I. Manton, B. Clarke, J. Exp. Biol. 3, 265 (1952).

    Google Scholar 

  9. D.W. Fawcett, Laryngoscope 64, 557 (1954).

    Article  Google Scholar 

  10. B. Afzelius, J. Biophys. Biochem. Cytol. 5, 269 (1959).

    Article  Google Scholar 

  11. P. Satir, J. Cell Biol. 26, 805 (1965).

    Article  Google Scholar 

  12. E.M. Purcell, Am. J. Phys. 45, 3 (1977).

    Article  ADS  Google Scholar 

  13. T. Montenegro-Johnson, D.J. Smith, D. Loghin, Modelling microscopic swimming in shear-thinning fluids, submitted (2012).

  14. A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004).

    Article  ADS  Google Scholar 

  15. D.W. Fawcett, Dev. Biol. 44, 394 (1975).

    Article  Google Scholar 

  16. N. Hirokawa, Y. Tanaka, Y. Okada, S. Takeda, Cell 125, 33 (2006).

    Article  Google Scholar 

  17. S. Nonaka, S. Yoshiba, D. Watanabe, S. Ikeuchi, T. Goto, W.F. Marshall, H. Hamada, PLoS Biol. 3, 1467 (2005).

    Article  Google Scholar 

  18. D.J. Smith, A.A. Smith, J.R. Blake, J. Eng. Math. 70, 255 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Gray, G.J. Hancock, J. Exp. Biol. 32, 802 (1955).

    Google Scholar 

  20. O.S. Pak, E. Lauga, Phys. Fluids 23, 081702 (2011).

    Article  ADS  Google Scholar 

  21. J.R. Blake, M.A. Sleigh, Biol. Rev. Camb. Phil. Soc. 49, 85 (1974).

    Article  Google Scholar 

  22. A.T. Chwang, T.Y. Wu, Proc. R. Soc. London, Ser. B 178, 327 (1971).

    Article  ADS  Google Scholar 

  23. J.R. Blake, Proc. Camb. Phil. Soc. 70, 303 (1971).

    Article  ADS  MATH  Google Scholar 

  24. A. Vilfan, F. Jülicher, Phys. Rev. Lett. 96, 58102 (2006).

    Article  ADS  Google Scholar 

  25. K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010).

    Article  ADS  Google Scholar 

  26. K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940 (2011).

    Article  Google Scholar 

  27. D.J. Smith, J.R. Blake, Math. Sci. 34, 74 (2009).

    MathSciNet  MATH  Google Scholar 

  28. D.J. Smith, E.A. Gaffney, J.R. Blake, B. Math. Biol. 69, 1477 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  29. R.H. Dillon, L.J. Fauci, C. Omoto, X. Yang, Annu. N. Y. Acad. Sci. 1101, 494 (2007).

    Article  ADS  Google Scholar 

  30. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  31. E.A. Gaffney, H. Gadêlha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Annu. Rev. Fluid Mech. 43, 501 (2011).

    Article  ADS  Google Scholar 

  32. N. Hirokawa, Y. Okada, Y. Tanaka, Annu. Rev. Fluid Mech. 41, 53 (2009).

    Article  ADS  Google Scholar 

  33. W.E. Berdon, C. McManus, B. Afzelius, Pediat. Radiol. 34, 585 (2004).

    Google Scholar 

  34. A. Hilfinger, F. Jülicher, Phys. Biol. 5, 016003 (2008).

    Article  ADS  Google Scholar 

  35. J.H.E. Cartwright, O. Piro, I. Tuval, Proc. Natl. Acad. Sci. U.S.A. 101, 7234 (2004).

    Article  ADS  Google Scholar 

  36. C.J. Brokaw, Cell Motil. Cytoskel. 60, 35 (2005).

    Article  Google Scholar 

  37. D.J. Smith, J.R. Blake, E.A. Gaffney, J. R. Soc. Interface 5, 567 (2008).

    Article  Google Scholar 

  38. M. Hashimoto, K. Shinohara, J. Wang, S. Ikeuchi, S. Yoshiba, C. Meno, S. Nonaka, S. Takada, K. Hatta, A. Wynshaw-Boris et al., Nat. Cell Biol. 12, 170 (2010).

    Article  Google Scholar 

  39. K.M. Downs, T. Davies, Development 118, 1255 (1993).

    Google Scholar 

  40. R.E. Johnson, J. Fluid Mech. 99, 411 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. J.R. Blake, A.T. Chwang, J. Eng. Math. 8, 23 (1974).

    Article  MATH  Google Scholar 

  42. A.T. Chwang, T.Y. Wu, J. Fluid Mech. 67, 787 (1975).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Cortez, L. Fauci, A. Medovikov, Phys. Fluids 17, 1 (2005).

    Article  MathSciNet  Google Scholar 

  45. J. Ainley, S. Durkin, R. Embid, P. Boindala, R. Cortez, J. Comput. Phys. 227, 4600 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. D.J. Smith, Proc. R. Soc. London, Ser. A 465, 3605 (2009).

    Article  ADS  MATH  Google Scholar 

  47. R.N. Mills, D.F. Katz, Fertil. Steril. 29, 43 (1978).

    Google Scholar 

  48. D.F. Katz, J.W. Overstreet, F.W. Hanson, Fertil. Steril. 33, 179 (1980).

    Google Scholar 

  49. H.C. Fu, C.W. Wolgemuth, T.R. Powers, Phys. Fluids 21, 033102 (2009).

    Article  ADS  Google Scholar 

  50. J. Teran, L. Fauci, M. Shelley, Phys. Rev. Lett. 104, 38101 (2010).

    Article  ADS  Google Scholar 

  51. P.J. Carreau, Rheological equations from molecular network theories (University of Wisconsin-Madison, 1968).

  52. D. Braess, Finite elements: theory, fast solvers, and applications in solid mechanics (Cambridge University Press, 2007).

  53. T. Papanastasiou, N. Malamataris, K. Ellwood, Int. J. Numer. Meth. Fluids 14, 587 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Baranger, K. Najib, Numer. Math. 58, 35 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Barrett, W. Liu, Numer. Math. 64, 433 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Taylor, P. Hood, Comput. Fluids 1, 73 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  57. D.J. Smith, E.A. Gaffney, H. Gadêlha, N. Kapur, J.C. Kirkman-Brown, Cell Motil. Cytoskel. 66, 220 (2009).

    Article  Google Scholar 

  58. J.J.L. Higdon, J. Fluid Mech. 90, 685 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. F. Bashforth, J.C. Adams, An attempt to test the theories of capillary action: by comparing the theoretical and measured forms of drops of fluid (Cambridge University Press, 1883).

  60. A. Iserles, A first course in the numerical analysis of differential equations (Cambridge University Press, 2009).

  61. J.H.E. Cartwright, O. Piro, I. Tuval, HFSP J. 3, 77 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montenegro-Johnson, T.D., Smith, A.A., Smith, D.J. et al. Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35, 111 (2012). https://doi.org/10.1140/epje/i2012-12111-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12111-1

Keywords

Navigation