Skip to main content
Log in

Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Bénard convection

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The statistical properties of the thermal dissipation rate in turbulent Rayleigh-Bénard convection in a cylindrical cell are studied by means of three-dimensional direct numerical simulations for a fixed Prandtl number Pr = 0.7 and aspect ratio Γ = 1. The Rayleigh numbers Ra are between 107 and 3 × 1010. We apply a criterion that decomposes the cell volume into two disjoint subsets: the plume-dominated part and the turbulent background part. The plume-dominated set extends over the whole cell volume and is not confined to the boundary layers. It forms a complex spatial skeleton on which the heat is transported in the convection cell and its volume fraction decreases with increasing Rayleigh number. The latter finding holds also when the threshold, which separates both subvolumes, is varied. The Rayleigh number dependence of the mean moments and probability density functions of the thermal dissipation are analyzed on the subvolumes and related to other possible divisions of the convection volume, such as into boundary layer and bulk. The largest thermal dissipation events are always found in the plume-dominated subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Chillà, J. Schumacher, Eur. Phys. J. E 35, 58 (2012).

    Article  Google Scholar 

  2. S. Grossmann, D. Lohse, J. Fluid Mech. 407, 27 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Grossmann, D. Lohse, Phys. Fluids 16, 4462 (2004).

    Article  ADS  Google Scholar 

  4. X. He, P. Tong, K.-Q. Xia, Phys. Rev. Lett. 98, 144501 (2007).

    Article  ADS  Google Scholar 

  5. X. He, P. Tong, Phys. Rev. E 79, 026306 (2009).

    Article  ADS  Google Scholar 

  6. A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. X. He, P. Tong, E.S.C. Ching, J. Turb. 11, 35 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  8. X. He, E.S.C. Ching, P. Tong, Phys. Fluids 23, 025106 (2011).

    Article  ADS  Google Scholar 

  9. O. Shishkina, C. Wagner, J. Fluid Mech. 546, 51 (2006).

    Article  ADS  MATH  Google Scholar 

  10. O. Shishkina, C. Wagner, J. Fluid Mech. 599, 383 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M.S. Emran, J. Schumacher, J. Fluid Mech. 611, 13 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Kaczorowski, C. Wagner, J. Fluid Mech. 618, 89 (2009).

    Article  ADS  MATH  Google Scholar 

  13. R. Verzicco, R. Camussi, J. Fluid Mech. 477, 19 (2003).

    Article  ADS  MATH  Google Scholar 

  14. R. Verzicco, Eur. Phys. J. B 35, 133 (2003).

    Article  ADS  Google Scholar 

  15. E.S.C. Ching, H. Guo, X.-D. Shang, P. Tong, K.-Q. Xia, Phys. Rev. Lett. 93, 124501 (2004).

    Article  ADS  Google Scholar 

  16. Y. Gasteuil, W.L. Shew, M. Gibert, F. Chillà, B. Castaing, J.-F. Pinton, Phys. Rev. Lett. 99, 234302 (2007).

    Article  ADS  Google Scholar 

  17. M.S. Emran, J. Schumacher, Phys. Rev. E 82, 016303 (2010).

    Article  ADS  Google Scholar 

  18. X.-D. Shang, X.-L. Qiu, P. Tong, K.-Q. Xia, Phys. Rev. Lett. 90, 074501 (2003).

    Article  ADS  Google Scholar 

  19. X.-D. Shang, P. Tong, K.-Q. Xia, Phys. Rev. Lett. 100, 244503 (2008).

    Article  ADS  Google Scholar 

  20. R. Lakkaraju, R.J.A.M. Stevens, R. Verzicco, S. Grossmann, A. Prosperetti, C. Sun, D. Lohse to be published in Phys. Rev. E (2012).

    Article  Google Scholar 

  21. R. Verzicco, P. Orlandi, J. Comput. Phys. 123, 402 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. G. Grötzbach, J. Comput. Phys. 49, 241 (1983).

    Article  ADS  MATH  Google Scholar 

  23. J. Bailon-Cuba, M.S. Emran, J. Schumacher, J. Fluid Mech. 655, 152 (2010).

    Article  ADS  MATH  Google Scholar 

  24. R.J.A.M. Stevens, R. Verzicco, D. Lohse, J. Fluid Mech. 643, 495 (2010).

    Article  ADS  MATH  Google Scholar 

  25. T. Watanabe, T. Gotoh, New J. Phys. 6, 40 (2004).

    Article  ADS  Google Scholar 

  26. J. Schumacher, K.R. Sreenivasan, Phys. Fluids 17, 125107 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  27. J. Schumacher, Phys. Rev. E 79, 056301 (2009).

    Article  ADS  Google Scholar 

  28. J. Schumacher, Phys. Rev. Lett. 100, 134502 (2008).

    Article  ADS  Google Scholar 

  29. J.J. Niemela, K.R. Sreenivasan, Phys. Rev. Lett. 100, 184502 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Emran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emran, M.S., Schumacher, J. Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 35, 108 (2012). https://doi.org/10.1140/epje/i2012-12108-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12108-8

Keywords

Navigation