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1 LPMCN, Université Lyon 1 and UMR CNRS 5586, 69622 Villeurbanne, France
2 CNR-IPCF UOS Roma, Dipartimento di Fisica, Università Sapienza, I-00185 Roma, Italy
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Abstract. In this paper, we exploit an analogy of the run-and-tumble process for bacterial motility with the
Lorentz model of electron conduction in order to obtain analytical results for the intermediate scattering
function. This allows to obtain an analytical result for the van Hove function in real space for two-
dimensional systems. We furthermore consider the 2D circling motion of bacteria close to solid boundaries
with tumbling, and show that the analogy to electron conduction in a magnetic field allows to predict the
effective diffusion coefficient of the bacteria. The latter is shown to be reduced by the circling motion of
the bacteria.

1 Introduction

The motility characteristics of Escherichia coli (E. coli)
play a central role in the understanding of individual and
collective behavior of self-propelling organisms. As high-
lighted in the seminal work of H. Berg [1], E. coli moves
along straight trajectories, interrupted by quick reorienta-
tions, which at long times leads to a diffusive exploration
of space. This swimming behavior was accounted for by
H. Berg and co-workers by the so-called “run and tum-
ble” model of bacterial motility, where a ballistic “run”
phase at constant speed v0 is followed by “tumble” pe-
riods, occurring with a fixed rate, say λ, and leading to
a full randomization of the direction of motion [1–4]. In
the long-time limit this leads to a Brownian-like behav-
ior, with an effective diffusion coefficient of the organism,
which scales as Deff = v2

0/dλ (d the dimension).
Although the idealized dynamics presented here does

not account for interactions between bacteria, such as
chemotactic, hydrodynamic and hard-core interaction, the
“run and tumble” model acts as a paradigm for cell self-
propulsion, and is at the root of numerous investigations
of active microswimmers [5–10], and the consequences of
which still continue to be explored.

Recently, it has been shown that a new imaging mi-
croscopy, namely differential dynamic microscopy (DDM),
can provide a quantitative and robust characterization
of some of the motility properties of a bacterial sus-
pension. This method gives direct access to the in-
termediate scattering function (ISF) in Fourier space,
F (k, t) = 〈exp[ik · ΔRi(t)〉 (with Ri(t) the trajectory
of an individual swimmer), with unprecedented statistics
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and without the requirement of individual tracking of the
swimming organisms [11,12]. However data analysis re-
quires the a priori knowledge of the relevant F (k, t) which
is used for constructing the fitting function. According to
the “run and tumble” model, a population of microswim-
mers behaves ballistically for short times, with a corre-
sponding F (k, t) = sin(kv t)/kd t in 3D [11], while in the
long time limit it approaches its diffusive counter-part
F (k, t) = exp[−Deffk2t]. So far, experimental data have
been interpreted using the ballistic approximation and ob-
serving that, in the accessed k-range, the isotropic distri-
bution of bacterial swimming directions decorrelates the
ISF on a time scale that is shorter than the average tum-
bling period. Moreover no general solution for F (k, t) is
known which takes into account the tumbling process and
describes the cross-over between the two previous regimes.
This knowledge, however, could allow to use DDM for ac-
cessing the average tumble rate, other than providing bet-
ter estimates for the run properties, e.g. bacterial velocity
fluctuations and distributions. Note, that for the sake of
simplicity we neglect in this work the typical duration of a
tumble event, that is, the tumbling process is assumed to
be instantaneous. It has been shown that a finite tumble
time leads to non-trivial corrections [5,6], and thus should
be taken into account when aiming for a more quantitative
description.

Mathematically, in the run-and-tumble model, the
density distribution of the bacteria population obeys a
kinetic equation in the form [4]

∂tf(r,v, t) = −v0 û · ∂r f(r,v, t) − λ f(r,v, t)

+
λ

Ω

∫
dû′f(r, v0û

′, t), (1)
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where f(r,v, t) is the density distribution to get a bacteria
with position r and velocity v = v0 û at time t, v0 is the
self-propelling speed (here assumed to be a constant), û
is the unit vector pointing to the direction of motion of
the bacteria; Ω is the total solid angle, verifying Ω =∫

dû′. In the following, we introduce a projector operator
P(·) = 1

Ω

∫
dû′(·). This equation is valid for any dimension

of space. The ISF identifies with the Fourier transform of
the projected distribution

F (k, t) =
∫

dr P · f(r, v0 û, t) eik·r. (2)

In this paper, we develop an exact expression for the
density distribution and ISF. This is obtained by a for-
mal analogy (in 3D) of the “run and tumble” model with
the so-called Lorentz kinetic model, first introduced by
Lorentz in 1905 to describe the motion of electrons in met-
als [13]. Accordingly the formal exact solution obtained by
Hauge [14] for the Lorentz model provides an explicit for-
mula for the density distribution of bacteria undergoing
run and tumble dynamics. Results for the ISF for bacte-
rial dynamics are discussed in this context. We then com-
ment on the motion of bacteria close to boundaries on the
basis of a formal analogy of the motion of electrons in a
magnetic field.

2 Run-and-tumble and analogy with the
Lorentz model

In the Lorentz model, one assumes that collisions between
electrons can be neglected, while collisions with the atoms
of the metal are described as collisions with hard spheres.
Due to their large mass, the latter are assumed to act as
immobile scatterers that are randomly distributed with a
homogeneous density. The electrons thus perform ballistic
motion separated by specular collisions occuring on ran-
domly distributed atoms. This dynamics can be described
in terms of a (linear) Boltzmann equation for the electron
distribution, which writes in 3D

(∂t + v · ∂r)f(r,v, t) = π ρR2|v|(P − 1)f(r,v, t). (3)

Here, ρ is the density of scattering atoms, R is the sum of
the electron and atom radii; P is the projection operator
defined above. One should note that the norm of the veloc-
ity v0 = |v| is conserved by the dynamics, as collisions on
the heavy atoms are specular. Therefore, eq. (3) is found
to match exactly eq. (1) for the run-and-tumble dynam-
ics. Physically, tumble events correspond in the Lorentz
model to collisions of the electrons with the background
atoms. Accordingly, the mean free time between collisions,
ε = (π ρR2 v0)−1, corresponds to the inverse tumble rate:
ε = λ−1.

Assuming the complete randomization of direction af-
ter a tumble the velocity correlation function at a time
delay t− t′ will be simply given by v2

0 times the probabil-
ity of having no tumble events in a time interval t − t′:

〈v(t) · v(t′)〉 = v2
0e−λ |t−t′|. (4)

By double integration we can obtain an explicit expression
for the mean square displacement

〈|r(t) − r(0)|2〉 =
2v2

0

λ2
(λt − 1 + e−λ t), (5)

which, as opposed to Brownian motion, has no dependence
on the dimensionality of the space.

2.1 Exact solution to the run-and-tumble model

Following the derivation by Hauge for the Lorentz model
in 3D [14] (here applied to any dimension for the run-and-
tumble model), one introduces the Laplace-Fourier trans-
form of the distribution f(r,v, t):

Φ(k,v, z)=
∫ ∞

0

dt exp(−zt)
∫

dr exp(ik · r) f(r,v, t). (6)

The Fourier transform of the initial distribution f(r,v, t =
0) is denoted as h(k,v)

h(k,v) =
∫

dr exp(ik · r) f(r,v, t = 0). (7)

As pointed out in ref. [14], the trick to obtain the exact so-
lution for the above kinetic equation is that a closed equa-
tion on the projected distribution P · f (Fourier-Laplace
transformed) can be found and reinjected into the full
equation.

Let us first introduce an orientationally averaged bal-
listic propagator, P0(k, z), as

P0(k, z) = P

(
1

z + λ − ik · v

)
. (8)

This corresponds to the ISF in the absence of tumbling
events. It is straightforward to compute P0(k, t) for any
dimension of the system:

3D : P0(k, z) =
1

kv0
tan−1 kv0

z + λ
,

2D : P0(k, z) = [(z + λ)2 + (kv0)2]−1/2,

1D : P0(k, z) =
(z + λ)

(z + λ)2 + (kv0)2
, (9)

The exact solution for an arbitrary initial condition is
then obtained as

Φ(k,v, z) =
λ

z + λ − ik · v × 1
1 − λP0(k, z)

· P

(
h

z + λ − ik · v

)
+

h

z + λ − ik · v . (10)

Now, we specialize to the case where the bacteria are
initially located at a position r = 0 with an arbitrary
orientation û, so that f(r,v, t = 0) = δ(r), and h(k,v) =
1. Then one obtains

P

(
h

z + λ − ik · v

)
= P0(k, z), (11)
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so that the exact solution for the propagator Φ(k,v, z)
takes the expression

Φ(k,v, z) =
1

z + λ − ik · v × 1
1 − λP0(k, z)

. (12)

In order to obtain the ISF, one is interested in the
probability P (r, t) to find the particle at a position r at
time t, which is obtained by averaging over the orienta-
tions of the velocity: P (r, t) = P · f(r,v, t). One deduces
the Laplace transform of the ISF

P (k, z) =
P0(k, z)

1 − λP0(k, z)
. (13)

Combining with the expressions for the ballistic operator
in any dimension, eqs. (9), one obtains accordingly the an-
alytical expression of the Laplace transform of the ISF in
any dimension. It is interesting to remark that this result
is identical to the one by Kolesnik for random motion [15],
although the derivation based on the Lorentz analogy is
more direct and straightforward.

One can get a physical picture of the dynamics by not-
ing that this equation allows to rewrite the ISF as an infi-
nite sum of collisions steps following ballistic propagation

P (k, z) =
∞∑

n=0

λn P0(k, z)n+1. (14)

Alternatively, one may also interprete the above result
in eq. (13) by writing the corresponding integral equation
for the ISF in real time

P (k, t) = P0(k, t) + λ

∫ t

0

dsP0(k, t − s)P (k, s). (15)

Formally, one can write a corresponding Dyson series, here
associated with a collision expansion, and fully equivalent
to eq. (14)

P (k, t) = P0(k, t) + λ

∫ t

0

dsP0(k, t − s)P0(k, s)

+λ2

∫ t

0

ds

∫ s

0

ds′ P0(k, t−s)P0(k, s−s′)P0(k, s′)

+ . . . . (16)

This integral equation has a clear physical interpreta-
tion in terms of ballistic propagation, separated by colli-
sion steps leading to a gradual loss of memory.

2.2 Solution in various dimensions

2.2.1 Solution in 3D

Specializing to 3D, one gets explicitly

P (k, z) =
1

kv0
tan−1 kv0

z+λ

1 − λ
kv0

tan−1 kv0
z+λ

. (17)

This result has interesting limiting behaviors. First for
long time and small k, one can get the asymptotic expres-
sion, see e.g. [16]

P (k, z) � 1
z + Deffk2

, (18)

i.e. P (k, t) � exp(−Deffk2t), with the expression of the
effective diffusion coefficient as Deff = v2

0/3λ in perfect
agreement with the diffusive behavior at long time.

For short times (z → ∞), an asymptotic expansion
leads to the expression

P (k, t) � sin(kv0t)
kv0 t

. (19)

This is the Fourier transform of P (r, t) = δ(r−v0t)
4πr2 , i.e. a

ballistic motion expanding spatially at constant velocity
from the origin r = 0, as expected.

2.2.2 Analytical solutions in 2D

In two dimensions, the corresponding Laplace tansform of
the ISF writes as

P (k, z) =
[(z + λ)2 + (kv0)2]−1/2

1 − λ[(z + λ)2 + (kv0)2]−1/2
. (20)

In the hydrodynamic limit (k → 0, z → 0), one recovers
P (k, t) � exp(−Deffk2t) with, for 2D, Deff = v2

0/2λ, as
expected.

Now, this 2D geometry allows to push analytical calcu-
lations further and obtain an analytical form for the ISF,
as well as its counterpart in real space —the van Hove
function. Indeed, for 2 dimensions, the inverse Laplace
transform of P0(k, z)n+1 can be computed analytically as

L−1[P0(k, z)n+1]=
√

π

2
n
2 Γ (n+1

2 )
e−λt

(
t

kv0

)n
2

Jn
2
(kv0t), (21)

with Jν the Bessel function of the first kind and Γ (x) the
Euler gamma function. This allows to obtain an explicit
expression for the ISF in terms of an infinite series

P (k, t) = e−λ t
∞∑

n=0

√
π

2
n
2 Γ (n+1

2 )

(
λ2 t

k v0

)n
2

Jn
2
(k v0 t). (22)

To obtain the van Hove function, one should compute
the reverse Fourier transform of this sum

Gs(r, t) =
∫

dk
(2π)2

e−ik·r P (k, t)

=
1
2π

∫ ∞

0

k dk J0(k r)P (k, t). (23)

Using integral relationships on Bessel functions [17],
one gets

Gs(r, t) = e−λ t

[
δ(r − v0 t)

2π r

+
∞∑

n=1

(
λ
v0

)n

Δ(r, t)n−2

2n
√

π Γ (n+1
2 )Γ (n

2 )

]
(24)
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for r < v0 t and zero otherwise; Δ(r, t) =
√

v2
0t2 − r2. The

second term can be summed up exactly to give the final
result

Gs(r, t) = e−λ t

[
δ(r − v0 t)

2πr

+
λ

2π v0 Δ(r, t)
e

λ Δ(r,t)
v0

]
(25)

for r < v0 t and 0 otherwise. It can be easily check that the
above expression has the correct second moment (5). The
solution matches the result obtained by Stadje [18] for
two-dimensional random walks, and obtained by a very
different method.

2.2.3 1D solutions

In 1D, the solution for the Laplace transform of the ISF
is

P (k, z) =
z + λ

z (z + λ) + (k v0)2
. (26)

One may check easily that the corresponding van Hove
function in real space (inverse Laplace-Fourier transform
of P (k, z)) obeys a telegrapher’s equation in 1D

∂2

∂t2
G(x, t) + λ

∂

∂t
G(x, t) = v2

0

∂2

∂x2
G(x, t). (27)

The solution of this equation is in full agreement with
the result obtained in ref. [3] (with a factor of two in the
definition of λ)

G(x, t) =
e−

λ t
2

2

(
δ(x − v0t) + δ(x + v0t)

+
λ

2v0

[
I0

(
λΔ(x, t)

2v0

)

+
v0 t

Δ(x, t)
I1

(
λΔ(x, t)

2v0

)] )
(28)

for |x| < v0 t and 0 otherwise; Δ(x, t) =
√

v2
0t2 − x2 as

introduced above; I0 and I1 are modified Bessel functions.

3 Numerical results

In order to illustrate the use of the above results in typical
experimental situations, we simulate the run-and-tumble
dynamics of the self-propelled particles (see fig. 1) in a 2D
infinite system. The equation of motion of a single particle
is

∂trn = v0ûn, (29)

with rn the position of self-propelled particle n (n ∈
[1, N ]), v0 the constant speed, the same for all particles
and ûn the unit vector indicating the direction of mo-
tion of particle n. The direction is changed with rate λ.

Fig. 1. Left: scheme of self-propelled particles in 3D. Left:
typical 2D trajectories of self-propelled particles with run-and-
tumble dynamics.

Fig. 2. Top: numerically evaluated particle distributions at
four different times. At λt = 1 a fraction 1/e of “ballistic”
particles is still visible as a marked outer ring component. For
the last plotted time λt = 8 the ring is no longer visible and
the distribution of particles tends to the limit Gaussian shape.
Bottom: van Hove function Gs(r, t) as a function of the rescaled
distance r/� at the four times reported on the top panel. Solid
circles indicate numerically obtained values, compared to the
analytical expression given in eq. (25) (solid lines).

The new direction is drawn from a uniform distribution.
The average persistence length is thus given by � = v0/λ.
In non-dimensionless quantities we measure velocities in
units of v0 and times in units of 1/λ.

We measure the density probability distribution, i.e.
the van Hove function, in the simulations and compare
to the analytical expression for the 2D van Hove function
given in eq. (25). As shown in the bottom panel of fig. 2,
the analytical prediction perfectly reproduces the numer-
ically obtained curves. We note that a similar agreement
is found in 1 and 3D as expected (not shown), although in
the latter case only the Fourier-Laplace transform of the
van Hove function is known and a numerical inversion of
eq. (17) is performed.
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4 Run and tumble near solid boundaries

An interesting extension of the previous analogy concerns
the behavior of bacteria close to surfaces [19–22]. In this
situation, bacteria follow circular trajectories at a given
rotation velocity, say ω, and remain near the surface over
long periods. This points to the important role of the
motility of E. coli near surfaces on biolfilm formation and
infections [20,23]. The origin of this circular motion is the
hydrodynamic interaction between the bacteria and the
surfaces, so that the sign of the rotation (clockwise ver-
sus anti-clockwise) depends on the nature of the hydro-
dynamic boundary condition at the surface [22]. Further-
more the amplitude of the rotation velocity is a complex
function of the geometrical characteristics of the bacte-
ria [20,22].

Now, one may consider how this circling motion affects
the global dynamics of the bacteria, whenever tumbling
motion is taken into account. We consider a bacteria un-
dergoing a 2D motion in a plane close to a boundary, and
characterized by a rotation velocity ω. Accordingly, one
may generalize the run-and-tumble equation in order to
account for the circular motion, as

∂tf(r,v, t) = −∂r (v0 ûf(r,v, t)) − (ω × v) · ∂vf(r,v, t)
−λ f(r,v, t) + λ Pf(r,v, t), (30)

with v = v0û, ω is the angular velocity along the direction
perpendicular to the plane and P is the projection operator
in the 2D plane defined above, P(.) = (2π)−1

∫
dû (.).

Interestingly, this equation is the exact analog of the
dynamics of an electron in a magnetic field (perpendicu-
lar to the plane), with ω the corresponding cyclotron fre-
quency. In this case, an exact solution has been obtained
(in 3D) by Cornu and Piasecki [24], see also ref. [16], and
one may apply directly their method of derivation to the
equation above (although here in 2D, the operator appear-
ing in the equations in both problems are identical).

Following ref. [24], the Fourier-Laplace transform of
the probability density fω(r,v, t) reads in this case

Φω(k,v, z)=hω(k,v, z)+
λψ(k,v, z)

1 − λ Pψ(k,v, z)
×Phω(k,v, z),

(31)
with the effect of the initial state given by

hω(k,v, z) =
∫ ∞

0

dt exp[−(z + λ)t

−ik · x(v, t)]ĥω(k,Rω(−ωt) · v), (32)

In this equation, ĥω denotes the Fourier transform of
the initial state fω(r,v, t = 0) and Rω(α) is the ro-
tation of angle α around the axis in the direction of
ω (perpendicular to the plane). The shorthand notation
x(v, t) = ω−1[Rω(π

2 −ω t) ·v−Rω(π
2 ) ·v] has been intro-

duced and we have defined

ψ(k,v, z) =
∫ ∞

0

dt exp[−(z + λ)t − ik · x(v, t)]. (33)

Note that, in comparison to [24], only the 2D compo-
nents in the plane (thus perpendicular to ω) are consid-
ered here. In order to compute the ISF, the initial condi-
tion fω(r,v, t = 0) = δ(r) is considered and ĥω = 1. The
solution for the ISF is the projected function P (k, z) =
P · Φω(k,v, z), and can be again written formally as

P (k, z) =
P0(k, z)

1 − λP0(k, z)
, (34)

where P0 defined here as P0 = Pψ(k,v, z) is the orienta-
tionally averaged “ballistic” propagator, here associated
with rotational motion. Using the previous definition in
eq. (33), the angular integral involved in Pψ can be per-
formed explicitly to give

P0(k, z) =
∫ ∞

0

dt exp[−(z + λ)t]J0

(
2kv

ω
sin

ω t

2

)
, (35)

so that in real time, the projected propagator P0(k, t)
takes the expression

P0(k, t) = exp[−λt]J0

(
2kv

ω
sin

ω t

2

)
. (36)

As one expects, the latter result reduces to the previous
expression for the propagator in the limit ω → 0, see
eq. (21). While we could not push further the analytical
calculations, the ISF can be formally calculated in terms
of the collision expansion in eq. (16) with the “ballistic”
operator now given in the equation above.

The long-time diffusive behavior can however be ob-
tained from a low-k expansion of the ISF in eq. (34),
in the form P (k, z) � (z + Dωk2)−1. Formally this is
obtained by computing the pole zdiff(k) in eq. (34), de-
fined as 1/P0(k, zdiff(k)) = λ. In the k → 0 limit, one

has P0(k, z) = 1
z+λ

(
1 − k2 v2

2
(z+λ)2+ω2

)
+ O(k4), so that the

asymptotic behavior of the pole in the limit k → 0 takes
the form

zdiff(k) � −Dωk2 + O(k4), (37)

where the expression for the diffusion coefficient now takes
the expression

Dω = Deff
1

1 + ω2τ2
(38)

and Deff = 1
2v2

0τ is the bare 2D diffusion coefficient, and
τ = λ−1.

We finally quote that the above result for the diffusion
coefficient can be also obtained from a direct calculation
of the velocity autocorrelation function in the presence of
a rotational velocity. Following the same calculations as
in ref. [24], one may indeed obtain

〈vα(t)vα(0)〉 =
v2
0

2
cos(ω t) e−λ t, (39)

with α = {x, y} the coordinates in the plane. Note that
this result is obtained by a straightforward generalization
of the 3D calculation in ref. [24] to the present 2D planar
situation. This expression could also be obtained directly
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by noting that after a delay time t, the velocity correlation
is given simply by v0 × [v0 cos(ω t)], times the probability
of having no tumble event during this period, e−λ t.

Then, the diffusion coefficients for bacteria in the plane
can be deduced from the Green-Kubo relationship

Dω =
1
2

∑
α=x,y

∫ ∞

0

dt 〈vα(t)vα(0)〉, (40)

leading to Dω = v2τ
2 × (1 + ω2τ2)−1, with τ = λ−1, in

agreement with the previous hydrodynamic expansion.
Similarly the cross-correlation of the velocity can be

also computed as 〈vx(t)vy(0)〉 = v2
0
2 sin(ω t) exp[−λ t], so

that an off-diagonal diffusion Dxy = −Dyx is also pre-
dicted

Dxy = −Deff
ωτ

1 + ω2τ2
. (41)

Altogether the circular motion hinders the diffusion
of the particles at surfaces, and thus favors possible adhe-
sion to the surface to form a biofilm. It suggests to explore
experimentally the connection between the apparent dif-
fusion at surfaces and the observed rotational velocity.

5 Conclusion

To conclude, we have made use of an analogy between
the run-and-tumble dynamics of bacterial motility with
the Lorentz model of electron conduction in order to ob-
tain analytical prediction for the intermediate scattering
function. The model is then extended to account for the
circular motion of bacteria close to boundaries. It shows
that the effective diffusion of bacteria is reduced due to
circling.

Beyond the present context, it is interesting to note
that the problem shares an interesting analogy with the
structure factor of polymers with persistence length [25],
thereby allowing to provide some analytical predictions in
this situation also.
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PEOPLE-2009-IEF program. LA and RDL acknowledge sup-
port from MIUR-FIRB project RBFR08WDBE, Italian Insti-
tute of Technology under the Seed project BACT-MOBIL and
CASPUR High Performance Computing initiatives.
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