Skip to main content
Log in

Dynamics of Purcell’s three-link microswimmer with a passive elastic tail

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

One of the few possible mechanisms for self-propulsion at low Reynolds number is undulations of a passive elastic tail, as proposed in the classical work of Purcell (1977). This effect is studied here by investigating a variant of Purcell’s three-link swimmer model where the front joint angle is periodically actuated while the rear joint is driven by a passive torsional spring. The dynamic equations of motion are formulated and explicit expressions for the leading-order solution are derived by using perturbation expansion. The dependence of the motion on the actuation amplitude and frequency is analyzed, and optimization with respect to the swimmer’s geometry is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9, 339 (1977).

    Article  ADS  Google Scholar 

  2. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, 1965).

  3. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  4. E.M. Purcell, Am. J. Phys. 45, 3 (1977).

    Article  ADS  Google Scholar 

  5. J. Gray, H.W. Lissmann, J. Exp. Biol. 41, 135 (1964).

    Google Scholar 

  6. K.E. Machin, J. Exp. Biol. 35, 796 (1958).

    Google Scholar 

  7. C.J. Brokaw, Science 178, 455 (1972).

    Article  ADS  Google Scholar 

  8. S. Camalet, F. Jülicher, J. Prost, Phys. Rev. Lett. 82, 1590 (1999).

    Article  ADS  Google Scholar 

  9. E.A. Gaffney, H. Gadelha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Annu. Rev. Fluid Mech. 43, 501 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005).

    Article  ADS  Google Scholar 

  11. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Rev. Biomed. Engin. 12, 55 (2010).

    Article  Google Scholar 

  12. G.I. Taylor, Proc. R. Soc. London, Ser. A 209, 447 (1951).

    Article  ADS  MATH  Google Scholar 

  13. J. Gray, G.J. Hancock, J. Exp. Biol. 32, 802 (1955).

    Google Scholar 

  14. M.J. Lighthill, Comm. Pure Appl. Math. 5, 109 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  15. J.R. Blake, J. Fluid Mech. 46, 199 (1971).

    Article  ADS  MATH  Google Scholar 

  16. A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004).

    Article  ADS  Google Scholar 

  17. J.E. Avron, O. Kenneth, D.H. Oakmin, New J. Phys. 7, 234 (2005).

    Article  ADS  Google Scholar 

  18. A.M. Leshansky, O. Kenneth, Phys. Fluids 20, 063104 (2008).

    Article  ADS  Google Scholar 

  19. L.E. Becker, S.A. Koehler, H.A. Stone, J. Fluid Mech. 490, 15 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. R.G. Cox, J. Fluid Mech. 44, 791 (1970).

    Article  ADS  MATH  Google Scholar 

  21. D. Tam, A.E. Hosoi, Phys. Rev. Lett. 98, 068105 (2007).

    Article  ADS  Google Scholar 

  22. J.E. Avron, O. Raz, New J. Phys. 10, 063016 (2008).

    Article  ADS  Google Scholar 

  23. Y. Or, Phys Rev. Lett. 108, 258101 (2012).

    Article  ADS  Google Scholar 

  24. C.H. Wiggins, R.E. Goldstein, Phys. Rev. Lett. 80, 3879 (1998).

    Article  ADS  Google Scholar 

  25. M.L. Roper, R. Dreyfus, J. Baudry, M. Fermigier, J. Bibette, H.A. Stone, J. Fluid Mech. 554, 167 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E. Lauga, Phys. Rev. E 75, 041916 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Shapere, F. Wilczek, J. Fluid Mech. 198, 557 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A supplementary document supp1.pdf with more technical details is submitted online.

  29. A.H. Nayfeh, Perturbation Methods (Willey-VCH, 2004).

  30. J. Lighthill, Mathematical Biofluiddynamics (SIAM, Philadelphia, PA, 1975).

  31. E.M. Purcell, Proc. Natl. Acad. Sci. U.S.A. 94, 11307 (1997).

    Article  ADS  Google Scholar 

  32. J.E. Avron, O. Gat, O. Kenneth, Phys. Rev. Lett. 93, 186001 (2004).

    Article  ADS  Google Scholar 

  33. S. Childress, J. Fluid Mech. 705, 77 (2012).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Or.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passov, E., Or, Y. Dynamics of Purcell’s three-link microswimmer with a passive elastic tail. Eur. Phys. J. E 35, 78 (2012). https://doi.org/10.1140/epje/i2012-12078-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12078-9

Keywords

Navigation