Skip to main content
Log in

Mimicking DNA stretching with the Static Mode method: Shear stress versus transverse pulling stress

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

DNA sequencing using nanopores is closer than ever to become a reality, but further research and development still need to be done, especially to unravel the atomic-scale mechanisms of induced DNA stretching. At this level, molecular modeling and simulation are essential to investigate DNA conformational flexibility and its response to the forces involved. In this work, through a “Static Mode” approach, we present a directed exploration of the deformations of a 27-mer subjected to externally imposed forces, as it could be in a nanopore. We show how the DNA sugar-phosphate backbone undergoes the majority of the induced deformation, before the base pairing is affected, and to what extent unzipping initiation depends on the force direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.F. Keyser, J. R. Soc. Interface 8, 1369 (2011).

    Article  Google Scholar 

  2. C.R. Martin, Z.S. Siwy, Science 317, 331 (2007).

    Article  Google Scholar 

  3. M. Muthukumar, J. Chem. Phys. 111, 10371 (1999).

    Article  ADS  Google Scholar 

  4. J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).

    Article  ADS  Google Scholar 

  5. A.J. Storm, J.F. Chen, H.W. Zandbergen, C. Dekker, Phys. Rev. E 71, 051903 (2005).

    Article  ADS  Google Scholar 

  6. T. Osaki, J.P. Barbot, R. Kawano, H. Sasaki, O. Français, B. Le Pioufle, S. Takeuchi, Procedia Engin. 5, 796 (2010).

    Article  Google Scholar 

  7. A. Han, G. Schürmann, G. Mondin, R.A. Bitterli, N.G. Hegelbach, N.F. de Rooij, U. Staufer, Appl. Phys. Lett. 88, 093901 (2006).

    Article  ADS  Google Scholar 

  8. N.C. Seeman, Mol. Biotechnol. 37, 246 (2007).

    Article  Google Scholar 

  9. D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, Natl. Biotechnol. 26, 1146 (2008).

    Article  Google Scholar 

  10. J.J. Nakane, M. Akeson, A. Marziali, J. Phys.: Condens. Matter 15, 1365 (2003).

    Article  ADS  Google Scholar 

  11. U. Mirsaidov, J. Comer, V. Dimitrov, A. Aksimentiev, G. Timp, Nanotechnology 21, 395501 (2010).

    Article  Google Scholar 

  12. D.K. Lubensky, D.R. Nelson, Biophys. J. 77, 1824 (1999).

    Article  ADS  Google Scholar 

  13. P.G. De Gennes, Proc. Natl. Acad. Sci. U.S.A. 96, 7262 (1999).

    Article  ADS  Google Scholar 

  14. P.J. Bond, A.T. Guy, A.J. Heron, H. Bayley, S. Khalid, Biochemistry 50, 3777 (2001).

    Article  Google Scholar 

  15. O. Flomenbom, J. Klafter, Phys. Rev. E 68, 041910 (2003).

    Article  ADS  Google Scholar 

  16. M.G. Fyta, S. Melchionna, E. Kaxiras, S. Succi, Multiscale Model. Simul. 5, 1156 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Forrey, M. Muthukumar, J. Chem. Phys. 127, 015102 (2007).

    Article  ADS  Google Scholar 

  18. K. Luo, T. Ala-Nissila, S-C. Ying, A. Bhattacharya, Phys. Rev. Lett. 100, 050901 (2008).

    Article  Google Scholar 

  19. J. Comer, V. Dimitrov, Q. Zhao, G. Timp, A. Aksimentiev, Biophys. J. 96, 593 (2009).

    Article  ADS  Google Scholar 

  20. U. Bockelmann, Ph. Thomen, B. Essevaz-Roulet, V. Viasnoff, F. Heslot, Biophys. J. 82, 1537 (2002).

    Article  Google Scholar 

  21. B. McNally, M. Wanunu, A. Meller, Nano Lett. 8, 3418 (2008).

    Article  ADS  Google Scholar 

  22. V. Viasnoff, N. Chiaruttini, U. Bockelmann, Eur. Biophys. J. 38, 263 (2009).

    Article  Google Scholar 

  23. R. Kapri, S.M. Bhattacharjee, J. Phys.: Condens. Matter 18, S215 (2006).

    Article  ADS  Google Scholar 

  24. R. Lavery, A. Lebrun, J.-F. Allemand, D. Bensimon, V. Croquette, J. Phys.: Condens. Matter 14, 383 (2002).

    Article  ADS  Google Scholar 

  25. B. Essevaz-Roulet, U. Bockelmann, F. Heslot, Proc. Natl. Acad. Sci. U.S.A. 94, 11935 (1997).

    Article  ADS  Google Scholar 

  26. B. Chakrabarti, D.R. Nelson, J. Phys. Chem. B 113, 3831 (2009).

    Article  Google Scholar 

  27. C. Barbieri, S. Cocco, R. Monasson, F. Zamponi, Phys. Biol. 6, 025003 (2009).

    Article  ADS  Google Scholar 

  28. P.M. Lam, L. Zhen, J. Stat. Mech. P06023 (2011).

  29. J.Z.Y. Chen, Phys. Rev. E 66, 031912 (2002).

    Article  ADS  Google Scholar 

  30. D.K. Lubensky, D.R. Nelson, Phys. Rev. E 65, 031917 (2002).

    Article  ADS  Google Scholar 

  31. Y. Kafri, D. Mukamel, L. Peliti, Eur. Phys. J. B 27, 135 (2001).

    ADS  Google Scholar 

  32. N. Singh, Y. Singh, Eur. Phys. J. E 17, 7 (2005).

    Article  Google Scholar 

  33. A.R. Singh, D. Giri, S. Kumar, J. Chem. Phys. 132, 235105 (2010).

    Article  ADS  Google Scholar 

  34. M. Brut, A. Estève, G. Landa, G. Renvez, M. Djafari Rouhani, Eur. Phys. J. E 28, 17 (2009).

    Article  Google Scholar 

  35. G.G. Hammes, Y-C. Chang, T.G. Oas, Proc. Natl. Acad. Sci. U.S.A. 106, 13737 (2009).

    Article  ADS  Google Scholar 

  36. T. Macke, D.A. Case, Molecular modeling of nucleic acids (American Chemical Society, Washington, D.C., 1998).

  37. U. Bockelmann, V. Viasnoff, Biophys. J. 94, 2716 (2008).

    Article  Google Scholar 

  38. D.A. Case, T.A. Darden, T.E. Cheatham, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, R.C. Walker, W. Zhang, K.M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K.F. Wong, F. Paesani, J. Vanicek, L. Jian, X. Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M-J. Hsieh, V. Hornak, G. Cui, D.R. Roe, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, P.A. Kollman, B.P. Roberts, AMBER 11 (University of California, San Francisco, 2010).

  39. A. Perez, I. Marchan, D. Svozil, J. Sponer, T.E. Cheatham, C.A. Laughton, M. Orozco, Biophys. J. 92, 3817 (2007).

    Article  ADS  Google Scholar 

  40. M. Brut, A. Estève, G. Landa, G. Renvez, M. Djafari Rouhani, D. Gauchard, Tetrahedron 66, 9123 (2010).

    Article  Google Scholar 

  41. M. Brut, A. Estève, G. Landa, G. Renvez, M. Djafari Rouhani, J. Phys. Chem. B 115, 1616 (2010).

    Article  Google Scholar 

  42. M. Brut, A. Estève, G. Landa, M. Djafari Rouhani, M. Vaisset, D. Gauchard, Mater. Sci. Eng. 169, 23 (2010).

    Article  Google Scholar 

  43. C. Altona, M. Sundaralingam, J. Am. Chem. Soc. 94, 8205 (1972).

    Article  Google Scholar 

  44. IUPAC-IUB Commission on Biochemical Nomenclature (CNB), Pure Appl. Chem. 40, 291 (1974).

    Article  Google Scholar 

  45. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J-L. Viovy, D. Chatenay, F. Caron, Science 271, 792 (1996).

    Article  ADS  Google Scholar 

  46. P.G. deGennes, C. R. Acad. Sci., Ser IV: Phys. 2, 1505 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brut, M., Estève, A., Landa, G. et al. Mimicking DNA stretching with the Static Mode method: Shear stress versus transverse pulling stress. Eur. Phys. J. E 35, 75 (2012). https://doi.org/10.1140/epje/i2012-12075-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12075-0

Keywords

Navigation