Skip to main content
Log in

Evidence from adiabatic scanning calorimetry for the Halperin-Lubensky-Ma effect at the N-SmA phase transitions in mixtures of 7OCB+heptane with an injected SmA phase

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The high-resolution adiabatic scanning calorimetric technique has been used to investigate the nematic-smectic A transition (N-SmA in binary mixtures of the non-smectogenic liquid crystal heptyloxycyanobiphenyl (7OCB) and heptane, exhibiting a so-called injected smectic A phase. With the exception of a mixture with the lowest heptane mole fraction for which only an upper limit of 0.2 ± 0.2 J kg−1 for a possible latent heat could be obtained, for all other mixtures finite latent heats were obtained. The mole fraction dependence of the latent heat could be well fitted with a crossover function consistent with a mean-field free energy expression with a non-zero cubic term arising from the Halperin-Lubensky-Ma (HLM) coupling between the SmA order parameter and the orientational director fluctuations. The mole fraction dependence of the heat capacity effective critical exponents is similar to that observed in mixtures of the two liquid crystals octyloxycyanobiphenyl (8OCB) and nonylcyanobiphenyl (9OCB). The thermal behavior observed along the N-SmA phase transition line yields further strong evidence for the HLM coupling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

  2. G.B. Kasting, K.J. Lushington, C.W. Garland, Phys. Rev. B 22, 321 (1980).

    Article  ADS  Google Scholar 

  3. J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. A 26, 2886 (1982).

    Article  ADS  Google Scholar 

  4. J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. Lett. 52, 204 (1984).

    Article  ADS  Google Scholar 

  5. C.W. Garland, G. Nounesis, Phys. Rev. E 49, 2964 (1994).

    Article  ADS  Google Scholar 

  6. J. Thoen, G. Cordoyiannis, C. Glorieux, Liq. Cryst. 36, 669 (2009).

    Article  Google Scholar 

  7. K. Kobayashi, Phys. Lett. A 31, 125 (1970).

    Article  ADS  Google Scholar 

  8. W.L. MacMillan, Phys. Rev. A 4, 1238 (1971).

    Article  ADS  Google Scholar 

  9. P.G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973).

    Article  Google Scholar 

  10. B.I. Halperin, T.C. Lubensky, S.K. Ma, Phys. Rev. Lett. 32, 292 (1974).

    Article  ADS  Google Scholar 

  11. H. Marynissen, J. Thoen, W. Van Dael, Mol. Cryst. Liq. Cryst. 124, 195 (1985).

    Article  Google Scholar 

  12. M.A. Anisimov, V.P. Voronov, A.O. Kulkov, V.N. Petukhov, F. Kholmurodov, Mol. Cryst. Liq. Cryst. 150b, 399 (1987).

    Google Scholar 

  13. M.A. Anisimov, V.P. Voronov, E.E. Gorodetskii, V.E. Podneks, F. Kholmodurov, JETP Lett. 45, 425 (1987).

    ADS  Google Scholar 

  14. M.A. Anisimov, P. Cladis, E. Gorodetskii, D. Huse, V. Podneks, V. Taratuta, W. van Saarloos, V. Voronov, Phys. Rev. A 41, 6749 (1990).

    Article  ADS  Google Scholar 

  15. G. Cordoyiannis, C.S.P. Tripathi, C. Glorieux, J. Thoen, Phys. Rev. E. 82, 031707 (2010).

    Article  ADS  Google Scholar 

  16. J. Thoen, Int. J. Mod. Phys. B 9, 2157 (1995).

    Article  ADS  Google Scholar 

  17. J. Caerels, C. Glorieux, J. Thoen, Phys. Rev. E 65, 031704 (2002).

    Article  ADS  Google Scholar 

  18. K. Denolf, G. Cordoyiannis, C. Glorieux, J. Thoen, Phys. Rev. E 76, 051702 (2007).

    Article  ADS  Google Scholar 

  19. K.P. Sigdel, G.S. Iannacchione, Phys. Rev. E 82, 051702 (2010).

    Article  ADS  Google Scholar 

  20. H. Heuer, H. Kneppe, F. Schneider, Ber. Bunsenges. Phys. Chem. 93, 923 (1989).

    Google Scholar 

  21. Y. Yamaoka, Y. Taniguchi, S. Yasuzuka, Y. Yamamura, K. Saito, J. Chem. Phys. 135, 044705 (2011).

    Article  ADS  Google Scholar 

  22. M.E. Fisher, Phys. Rev. 176, 257 (1968).

    Article  ADS  Google Scholar 

  23. M.B. Sied, J. Salud, D.O. López, H. Allouchi, S. DDíez, J. Phys. Chem. B 107, 7820 (2003).

    Article  Google Scholar 

  24. J. Thoen, in Heat Capacities: Liquids, Solutions and Vapours (The royal Society of Chemistry, London, 2010) Chapt. 13.

  25. J.N. Murrel, E.A. Boucher, Properties of Liquids and Solutions (Wiley, New York, 1982) Chapt. 6.

  26. A. Yethiraj, R. Mukhopadhyay, J. Bechhoefer, Phys. Rev. E 65, 021702 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. P. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, C.S.P., Losada-Pérez, P., Leys, J. et al. Evidence from adiabatic scanning calorimetry for the Halperin-Lubensky-Ma effect at the N-SmA phase transitions in mixtures of 7OCB+heptane with an injected SmA phase. Eur. Phys. J. E 35, 54 (2012). https://doi.org/10.1140/epje/i2012-12054-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12054-5

Keywords

Navigation