Skip to main content
Log in

Dipolar structuring of organically modified fluorohectorite clay particles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

This report focuses on both the characterization of organically modified fluorohectorite (Fh) clay particles and their electric-field-induced alignment when suspended in a non-polar liquid (silicone oil). Thermal decomposition temperatures of the surfactant molecules adsorbed on the clay surfaces and those being intercalated between clay crystalline layers were measured by thermal gravimetric analysis (TGA). Zeta potential measurements confirmed the successful modification of the clay surfaces. Optical microscopy observations showed that the sedimentation of modified particles was much slower compared to that of the non-modified system. It was shown that organic modification has a significant effect on colloidal stability of the system, preventing particles from forming large aggregates when suspended in a non-polar liquid. There are also signs of a slight increase in overall alignment of the clay particles when exposed to in an electric field, with the nematic order parameter (S2) being higher for the organically modified particles, compared to that of the non-modified counterparts. This behaviour is mainly a result of the formation of smaller and more uniform aggregates, in contrast to the large aggregate structures formed by non-modified clay particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzan, ACS Nano 4, 3591 (2010).

    Article  Google Scholar 

  2. Y.F. Zhu, C. Ma, W. Zhang, R.P. Zhang, N. Koratkar, J. Liang, J. Appl. Phys. 105, 054319 (2009).

    Article  ADS  Google Scholar 

  3. T. Prasse, J.Y. Cavaille, W. Bauhofer, Compos. Sci. Technol. 63, 1835 (2003).

    Article  Google Scholar 

  4. T.G.M. Ven, M.K. Baloch, J. Colloid Interface Sci. 136, 494 (1990).

    Article  Google Scholar 

  5. K. Shin, S. Lee, J.J. Kim, K.D. Suh, Macromol. Rapid Commun. 31, 1987 (2010).

    Article  Google Scholar 

  6. M. Mittal, E.M. Furst, Adv. Funct. Mater. 19, 3271 (2009).

    Article  Google Scholar 

  7. J.S. Schepers, R.J. Miller, Clays Clay Miner. 22, 213 (1974).

    Article  ADS  Google Scholar 

  8. B.R. Jennings, H.G. Jerrard, J. Chem. Phys. 42, 511 (1965).

    Article  ADS  Google Scholar 

  9. K.P.S. Parmar, Y. Méheust, B. Schelerupsen, J.O. Fossum, Langmuir 24, 1814 (2008).

    Article  Google Scholar 

  10. B. Wang, M. Zhou, Z. Rozynek, J.O. Fossum, J. Mater. Chem. 19, 1816 (2009).

    Article  Google Scholar 

  11. Y. Méheust, K.P.S. Parmar, B. Schelerupsen, J.O. Fossum, J. Rheol. 55, 809 (2011).

    Article  ADS  Google Scholar 

  12. Z. Rozynek, K.D. Knudsen, J.O. Fossum, Y. Méheust, B. Wang, M. Zhou, J. Phys.: Condens. Matter 22, 324104 (2010).

    Google Scholar 

  13. J.O. Fossum, Y. Méheust, K.P.S. Parmar, K.D. Knudsen, K.J. Maloy, D.M. Fonseca, Europhys. Lett. 74, 438 (2006).

    Article  ADS  Google Scholar 

  14. W. Xie, Z.M. Gao, W.P. Pan, D. Hunter, A. Singh, R. Vaia, Chem. Mater. 13, 2979 (2001).

    Article  Google Scholar 

  15. E.P. Giannelis, Adv. Mater. 8, 29 (1996).

    Article  Google Scholar 

  16. P. Podsiadlo, A.K. Kaushik, E. Arruda et al., Science 318, 80 (2007).

    Article  ADS  Google Scholar 

  17. S. Letaief, C. Detellier, J. Mater. Chem. 17, 1476 (2007).

    Article  Google Scholar 

  18. P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Appl. Clay Sci. 15, 11 (1999).

    Article  Google Scholar 

  19. G.J. da Silva, J.O. Fossum, E. DiMasi, K.J. Måløy, S.B. Lutnæs, Phys. Rev. E 66, 011303 (2002).

    Article  ADS  Google Scholar 

  20. N.I. Ringdal, D.M. Fonseca, E.L. Hansen, H. Hemmen, J.O. Fossum, Phys. Rev. E 81, 10 (2010).

    Google Scholar 

  21. P.D. Kaviratna, T.J. Pinnavaia, P.A. Schroeder, J. Phys. Chem. Solids 57, 1897 (1996).

    Article  ADS  Google Scholar 

  22. H.P. He, J. Duchet, J. Galy, J.F. Gerard, J. Colloid Interface Sci. 288, 171 (2005).

    Article  Google Scholar 

  23. Y.F. Xi, Z. Ding, H.P. He, R.L. Frost, J. Colloid Interface Sci. 277, 116 (2004).

    Article  Google Scholar 

  24. C. Bisio, F. Carniato, G. Paul, G. Gatti, E. Boccaleri, L. Marchese, Langmuir 27, 7250 (2011).

    Article  Google Scholar 

  25. Y. Xi, W. Martens, H. He, R.L. Frost, J. Therm. Anal. Calorim. 81, 91 (2005).

    Article  Google Scholar 

  26. Jiaxing Li, Xiuqing Gong, Shuyu Chen, Weijia Wen, Ping Sheng, J. Appl. Phys. 107, 093507 (2010).

    Article  ADS  Google Scholar 

  27. J. Lu, X.P. Zhao, J. Mater. Res. 17, 1513 (2002).

    Article  ADS  Google Scholar 

  28. Z. Rozynek, A. Józefczak, K.D. Knudsen, A. Skumiel, T. Hornowski, J.O. Fossum, M. Timko, P. Kopčanský, M. Koneracká, Eur. Phys. J. E 34, 28 (2011).

    Article  Google Scholar 

  29. H.P. He, R.L. Frost, F. Deng, J.X. Zhu, X.Y. Wen, P. Yuan, Clays Clay Miner. 52, 350 (2004).

    Article  ADS  Google Scholar 

  30. Y. Xi, R.L. Frost, H. He, J. Colloid Interface Sci. 305, 150 (2007).

    Article  Google Scholar 

  31. P.H. Massinga, W.W. Focke, P.L. de Vaal, M. Atanasova, Appl. Clay Sci. 49, 142 (2010).

    Article  Google Scholar 

  32. J.X. Zhu, H.P. He, J.G. Guo, D. Yang, X.D. Xie, Chin. Sci. Bull. 48, 368 (2003).

    Google Scholar 

  33. G. Lagaly, Solid State Ionics 22, 43 (1986).

    Article  Google Scholar 

  34. H. Hemmen, N.I. Ringdal, E.N.D. Azevedo, M. Engelsberg, E.L. Hansen, Y. Méheust, J.O. Fossum, K.D. Knudsen, Langmuir 25, 12507 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Rozynek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozynek, Z., Wang, B., Fossum, J.O. et al. Dipolar structuring of organically modified fluorohectorite clay particles. Eur. Phys. J. E 35, 9 (2012). https://doi.org/10.1140/epje/i2012-12009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12009-x

Keywords

Navigation