Skip to main content
Log in

On the potential energy landscape of supercooled liquids and glasses

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The activation-relaxation technique (ART), a saddle-point search method, is applied to determine the potential energy landscape around supercooled and glassy configurations of a three-dimensional binary Lennard-Jones system. We show a strong relation between the distribution of activation energies around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally activated transitions found by ART around a supercooled configuration with the succession of transitions undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We find that ART is biased towards more heterogeneous transitions with higher activation energies and more broken bonds than the MD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Chem. Phys. 100, 13200 (1996)

    Article  Google Scholar 

  2. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)

    Article  ADS  Google Scholar 

  3. G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005)

    Article  ADS  Google Scholar 

  4. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008)

    Article  Google Scholar 

  5. H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Nat. Mater. 9, 324 (2010)

    Article  ADS  Google Scholar 

  6. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  7. F.H. Stillinger, T.A. Weber, Science 225, 983 (1984)

    Article  ADS  Google Scholar 

  8. H. Jónsson, H.C. Andersen, Phys. Rev. Lett. 60, 2295 (1988)

    Article  ADS  Google Scholar 

  9. F.H. Stillinger, Science 267, 1935 (1995)

    Article  ADS  Google Scholar 

  10. S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)

    Article  ADS  Google Scholar 

  11. T.B. Schroder, S. Sastry, J.C. Dyre, S.C. Glotzer, J. Chem. Phys. 112, 9834 (2000)

    Article  ADS  Google Scholar 

  12. S. Büchner, A. Heuer, Phys. Rev. Lett. 84, 2168 (2000)

    Article  ADS  Google Scholar 

  13. B. Doliwa, A. Heuer, Phys. Rev. Lett. 91, 235501 (2003)

    Article  ADS  Google Scholar 

  14. D.J. Wales, M.A. Miller, T.R. Walsh, Nature 394, 758 (1998)

    Article  ADS  Google Scholar 

  15. R. Malek, N. Mousseau, Phys. Rev. E 62, 7723 (2000)

    Article  ADS  Google Scholar 

  16. E. Cancès, F. Legoll, M.C. Marinica, K. Minoukadeh, F. Willaime, J. Chem. Phys. 130, 114711 (2009)

    Article  ADS  Google Scholar 

  17. D. Rodney, C.A. Schuh, Phys. Rev. B 80, 184203 (2009)

    Article  ADS  Google Scholar 

  18. D. Rodney, C. Schuh, Phys. Rev. Lett. 102, 235503 (2009)

    Article  ADS  Google Scholar 

  19. G. Wahnström, Phys. Rev. A 44, 3752 (1991)

    Article  ADS  Google Scholar 

  20. Y. Shi, M.L. Falk, Phys. Rev. B 73, 214201 (2006)

    Article  ADS  Google Scholar 

  21. D. Coslovich, G. Pastore, J. Chem. Phys. 127, 124504 (2007)

    Article  ADS  Google Scholar 

  22. K. Watanabe, H. Tanaka, Phys. Rev. Lett. 100, 158002 (2008)

    Article  ADS  Google Scholar 

  23. D. Rodney, M. Fivel, R. Dendievel, Phys. Rev. Lett. 95, 95108004 (2005)

    Article  Google Scholar 

  24. H. Jónsson, G. Mills, K. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, Singapore, 1998) p. 385

  25. D. Rodney, Phys. Rev. B 76, 144108 (2007)

    Article  ADS  Google Scholar 

  26. G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)

    Article  ADS  Google Scholar 

  27. G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)

    Article  ADS  Google Scholar 

  28. M. Goldstein, J. Chem. Phys. 51, 3728 (1969)

    Article  ADS  Google Scholar 

  29. F. Valiquette, N. Mousseau, Phys. Rev. B 68, 125209 (2003)

    Article  ADS  Google Scholar 

  30. J.C. Dyre, Phys. Rev. Lett. 58, 792 (1987)

    Article  ADS  Google Scholar 

  31. N.P. Bailey, T.B. Schrøder, J.C. Dyre, Phys. Rev. Lett. 102, 055701 (2009)

    Article  ADS  Google Scholar 

  32. E.R. Homer, D. Rodney, C.A. Schuh, Phys. Rev. E 81, 064204 (2010)

    Google Scholar 

  33. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439, 419 (2006)

    Article  ADS  Google Scholar 

  34. Y.Q. Cheng, A.J. Cao, E. Ma, Acta Mater. 57, 3253 (2009)

    Article  ADS  Google Scholar 

  35. C.H. Rycroft, G.S. Grest, J.W. Landry, M.Z. Bazant, Phys. Rev. E 74, 021306 (2006)

    Article  ADS  Google Scholar 

  36. U.R. Pedersen, T.B. Schrøder, J.C. Dyre, P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010)

    Article  ADS  Google Scholar 

  37. Y. Shi, M.L. Falk, Phys. Rev. Lett. 95, 095502 (2005)

    Article  ADS  Google Scholar 

  38. M. Utz, P. Debenedetti, F.H. Stillinger, Phys. Rev. Lett. 84, 1471 (2000)

    Article  ADS  Google Scholar 

  39. A.S. Argon, H.Y. Kuo, J. Non-Cryst. Solids 37, 241 (1980)

    Article  ADS  Google Scholar 

  40. A.S. Argon, J. Appl. Phys. 39, 4080 (1968)

    Article  ADS  Google Scholar 

  41. B. Doliwa, A. Heuer, Phys. Rev. E 67, 030501 (2003)

    Article  ADS  Google Scholar 

  42. B. Doliwa, A. Heuer, Phys. Rev. E 67, 031506 (2003)

    Article  ADS  Google Scholar 

  43. R.A. Denny, D.R. Reichman, J.P. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)

    Article  ADS  Google Scholar 

  44. T.F. Middleton, D.J. Wales, Phys. Rev. B 64, 024205 (2001)

    Article  ADS  Google Scholar 

  45. G.A. Appignanesi, J.A. Rodriguez Fris, R.A. Montani, W. Kob, Phys. Rev. Lett. 96, 057801 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rodney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodney, D., Schrøder, T. On the potential energy landscape of supercooled liquids and glasses. Eur. Phys. J. E 34, 100 (2011). https://doi.org/10.1140/epje/i2011-11100-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11100-2

Keywords

Navigation