Skip to main content
Log in

Supramolecular polymorphism of DNA in non-cationic Lα lipid phases

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The structure of a complex between hydrated DNA and a non-cationic lipid is studied, including its phase diagram. The complex is spontaneously formed by adding DNA fragments (ca. 150 base pairs in length) to non-cationic lipids and water. The self-assembly process often leads to highly ordered structures. The structures were studied by combining X-ray scattering, fluorescence and polarized microscopy, as well as freeze-fracture experiments with transmission electron microscopy. We observe a significant increase of the smectic order as DNA is incorporated into the water layers of the lamellar host phase, and stabilization of single phase domains for large amounts of DNA. The effect of confinement on DNA ordering is investigated by varying the water content, following three dilution lines. A rich polymorphism is found, ranging from weakly correlated DNA-DNA in-plane organizations to highly ordered structures, where transmembrane correlations lead to the formation of columnar rectangular and columnar hexagonal superlattices of nucleotides embedded between lipid lamellae. From these observations, we suggest that addition of DNA to the lamellar phase significantly restricts membrane fluctuations above a certain concentration and helps the formation of the lipoplex. The alteration of membrane steric interactions, together with the appearance of interfacial interactions between membranes and DNA molecules may be a relevant mechanism for the emergence of highly ordered structures in the concentrated regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Malmsten, Soft Matter 2, 760 (2006).

    Article  ADS  Google Scholar 

  2. R. Koynova, B. Tenchov, Soft Matter 5, 3187 (2009).

    Article  ADS  Google Scholar 

  3. J.N. Israelachvili, Intermolecular and Surfaces Forces (Academic Press Limited, London, 1991) pp. 341-364

  4. P.L. Felgner, Proc. Natl. Acad. Sci. U.S.A. 84, 7413 (1987).

    Article  ADS  Google Scholar 

  5. P.L. Felgner, G.M. Ringold, Nature 337, 387 (1989).

    Article  ADS  Google Scholar 

  6. R. Koynova, R. MacDonald, Nanolett. 4, 1475 (2004).

    Article  ADS  Google Scholar 

  7. V.A. Rakhmanova, E.V. Pozharski, R.C. MacDonald, J. Membr. Biol. 200, 35 (2004).

    Article  Google Scholar 

  8. C. Safinya, Curr. Opin. Struc. Biol. 11, 440 (2001).

    Article  Google Scholar 

  9. J. Gustafsson, G. Arvidson, G. Karlsson, M. Almgren, Biochim. Biophys. Acta 1235, 305 (1995).

    Article  Google Scholar 

  10. B. Sternberg, F.L. Sorgi, L. Huang, FEBS Lett. 356, 361 (1994).

    Article  Google Scholar 

  11. J.O. Rädler, I. Koltover, T. Salditt, C.R. Safinya, Science 275, 810 (1997).

    Article  Google Scholar 

  12. F. Artzner, R. Zantl, G. Rapp, J.O. Rädler, Phys. Rev. Lett. 81, 5015 (1998).

    Article  ADS  Google Scholar 

  13. G. Caracciolo, D. Pozzi, R. Caminiti, G. Mancini, P. Luciani, H. Amenitsch, J. Am. Chem. Soc. 129, 10092 (2007).

    Article  Google Scholar 

  14. J.J. McManus, J.O. Rädler, K.A. Dawson, Langmuir 19, 9630 (2003).

    Article  Google Scholar 

  15. J.J. McManus, J.O. Rädler, K.A. Dawson, J. Am. Chem. Soc. 126, 15966 (2004).

    Article  Google Scholar 

  16. I. Koltover, T. Salditt, J.O. Rädler, C.R. Safinya, Science 281, 78 (1998).

    Article  ADS  Google Scholar 

  17. H. Liang, D. Harries, G.C.L. Wong, Proc. Natl. Acad. Sci. U.S.A. 102, 11173 (2005).

    Article  ADS  Google Scholar 

  18. K.K. Ewert, H.M. Evans, A. Zidovska, N.F. Bouxsein, A. Ahmad, C.R. Safinya, J. Am. Chem. Soc. 128, 3998 (2006).

    Article  Google Scholar 

  19. A. Bilalov, U. Olsson, B. Lindman, Soft Matter 7, 730 (2011).

    Article  ADS  Google Scholar 

  20. D. Harries, S. May, W.M. Gelbart, A. Ben-Shaul, Biophys. J. 75, 159 (1998).

    Article  ADS  Google Scholar 

  21. S. May, D. Harries, A. Ben-Shaul, Biophys. J. 78, 1681 (2000).

    Article  Google Scholar 

  22. O. Farago, N. Grønbech-Jensen, P. Pincus, Phys. Rev. Let. 96, 018102 (2006).

    Article  ADS  Google Scholar 

  23. O. Farago, N. Grønbech-Jensen, J. Am. Chem. Soc. 131, 2875 (2009).

    Article  Google Scholar 

  24. O. Farago, N. Grønbech-Jensen, Soft Matter 7, 4302 (2011).

    Article  ADS  Google Scholar 

  25. L. Golubović, M. Golubović, Phys. Rev. Lett. 80, 4341 (1998).

    Article  ADS  Google Scholar 

  26. C.S. O'Hern, T.C. Lubensky, Phys. Rev. Lett. 80, 4345 (1998).

    Article  ADS  Google Scholar 

  27. J.J. McManus, J.O. Rädler, K.A. Dawson, J. Phys. Chem. B 107, 9869 (2003).

    Article  Google Scholar 

  28. R.J. Clarke, C. Lüpfert, Biophys. J. 76, 2614 (1999).

    Article  ADS  Google Scholar 

  29. W. Hu, P.R. Haddad, K. Hasebe, M. Mori, K. Tanaka, M. Ohno, N. Kamo, Biophys. J. 83, 3351 (2002).

    Article  ADS  Google Scholar 

  30. T. Pott, D. Roux, FEBS Lett. 511, 150 (2002).

    Article  Google Scholar 

  31. D. Roux, P. Chenevier, T. Pott, L. Navailles, O. Regev, O. Mondain-Monval, Curr. Med. Chem. 11, 169 (2004).

    Article  Google Scholar 

  32. A. Colin, D. Roux, Eur. Phys. J. E 8, 499 (2002).

    Google Scholar 

  33. E. Andreoli de Oliveira, E.R. Teixeira da Silva, A. Février, É. Grelet, F. Nallet, L. Navailles, EPL 91, 28001 (2010).

    Article  ADS  Google Scholar 

  34. N.J. Servers, Nat. Protoc. 2, 547 (2007).

    Article  Google Scholar 

  35. T. Salditt, I. Koltover, J.O. Rädler, C.R. Safinya, Phys. Rev. Let. 79, 2582 (1997).

    Article  ADS  Google Scholar 

  36. T. Pott, A. Colin, L. Navailles, D. Roux, Interface Sci. 11, 249 (2003).

    Article  Google Scholar 

  37. F. Livolant, Physica A 176, 117 (1991).

    Article  ADS  Google Scholar 

  38. A. Leforestier, F. Livolant, Biophys. J. 73, 1771 (1997).

    Article  Google Scholar 

  39. F. Livolant, A.-M. Levelut, J. Doucet, J.-P. Benoit, Nature 339, 724 (1989).

    Article  ADS  Google Scholar 

  40. D. Durant, J. Doucet, F. Livolant, J. Phys. II 2, 1769 (1992).

    Google Scholar 

  41. F. Nallet, R. Laversanne, D. Roux, J. Phys. II 3, 487 (1993).

    Article  Google Scholar 

  42. V. Ponsinet, P. Fabre, J. Phys. II 6, 955 (1996).

    Article  Google Scholar 

  43. Y. Suganuma, M. Imai, K. Nakaya, J. Appl. Crystallogr. 40, S303 (2007).

    Article  Google Scholar 

  44. J.P. de Silva, A.S. Poulos, B. Pansu, P. Davidson, B. Kasmi, D. Petermann, S. Asnacios, F. Meneau, M. Impéror, Eur. Phys. J. E 34, 4 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Navailles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira da Silva, E.R., Andreoli de Oliveira, E., Février, A. et al. Supramolecular polymorphism of DNA in non-cationic Lα lipid phases. Eur. Phys. J. E 34, 83 (2011). https://doi.org/10.1140/epje/i2011-11083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11083-x

Keywords

Navigation