Skip to main content
Log in

Dynamics of two trapped Brownian particles: Shear-induced cross-correlations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamics of two Brownian particles trapped by two neighboring harmonic potentials in a linear shear flow is investigated. The positional correlation functions in this system are calculated analytically and analyzed as a function of the shear rate and the trap distance. Shear-induced cross-correlations between particle fluctuations along orthogonal directions in the shear plane are found. They are linear in the shear rate, asymmetric in time, and occur for one particle as well as between both particles. Moreover, the shear rate enters as a quadratic correction to the well-known correlations of random displacements along parallel spatial directions. The correlation functions depend on the orientation of the connection vector between the potential minima with respect to the flow direction. As a consequence, the inter-particle cross-correlations between orthogonal fluctuations can have zero, one or two local extrema as a function of time. Possible experiments for detecting these predicted correlations are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Taylor, Proc. R. Soc. London, Ser. A 219, 186 (1953)

    Article  ADS  Google Scholar 

  2. J. Ottino, S. Wiggins, Philos. Trans. R. Soc. London, Ser. A 362, 923 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. A. Groisman, V. Steinberg, Nature 410, 905 (2001)

    Article  ADS  Google Scholar 

  4. J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)

  5. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

  6. J.C. Meiners, S.R. Quake, Phys. Rev. Lett. 82, 2211 (1999)

    Article  ADS  Google Scholar 

  7. M. Reichert, H. Stark, Phys. Rev. E 69, 031407 (2004)

    Article  ADS  Google Scholar 

  8. D. Smith, H. Babcock, S. Chu, Science 283, 1724 (1999)

    Article  ADS  Google Scholar 

  9. P.G. deGennes, Science 276, 1999 (1997)

    Article  Google Scholar 

  10. A. Groisman, V. Steinberg, Nature 405, 53 (2000)

    Article  ADS  Google Scholar 

  11. T. Perkins, D. Smith, R. Larson, S. Chu, Science 268, 83 (1995)

    Article  ADS  Google Scholar 

  12. F. Brochard-Wyart, Europhys. Lett. 23, 105 (1993)

    Article  ADS  Google Scholar 

  13. R.G. Larson, T.T. Perkins, D.E. Smith, S. Chu, Phys. Rev. E 55, 1794 (1997)

    Article  ADS  Google Scholar 

  14. R. Rzehak, D. Kienle, T. Kawakatsu, W. Zimmermann, Europhys. Lett. 46, 821 (1999)

    Article  ADS  Google Scholar 

  15. R. Rzehak, W. Kromen, T. Kawakatsu, W. Zimmermann, Eur. Phys. J. E 2, 3 (2000)

    Article  Google Scholar 

  16. D. Kienle, W. Zimmermann, Macromolecules 34, 9173 (2001)

    Article  ADS  Google Scholar 

  17. R. Rzehak, W. Zimmermann, Phys. Rev. E 68, 021804 (2003)

    Article  ADS  Google Scholar 

  18. P. Szymczak, M. Cieplak, J. Chem. Phys. 125, 164903 (2006)

    Article  ADS  Google Scholar 

  19. D. Kienle, R. Rzehak, W. Zimmermann, submitted (2010)

  20. P. Doyle, B. Ladoux, J. Viovy, Phys. Rev. Lett. 84, 4769 (2000)

    Article  ADS  Google Scholar 

  21. M. Webster, J. Yeomans, J. Chem. Phys. 122, 164903 (2005)

    Article  ADS  Google Scholar 

  22. R. Delgado-Buscalioni, Phys. Rev. Lett. 96, 088303 (2006)

    Article  ADS  Google Scholar 

  23. C.A. Lueth, E.S.G. Shaqfeh, Macromolecules 42, 9170 (2009)

    Article  ADS  Google Scholar 

  24. Y. Zhang et al., J. Chem. Phys. 130, 234902 (2009)

    Article  ADS  Google Scholar 

  25. J. Hur, E. Shaqfeh, R. Larson, J. Rheol. 44, 713 (2000)

    Article  ADS  Google Scholar 

  26. C. Schroeder, R. Teixeira, E. Shaqfeh, S. Chu, Phys. Rev. Lett. 95, 018301 (2005)

    Article  ADS  Google Scholar 

  27. S. Gerashchenko, V. Steinberg, Phys. Rev. Lett. 96, 038304 (2006)

    Article  ADS  Google Scholar 

  28. B. Eckhardt, R. Pandit, Eur. Phys. J. B 33, 373 (2003)

    Article  ADS  Google Scholar 

  29. G. Khujadze, M. Oberlack, G. Chagelishvili, Phys. Rev. Lett. 97, 034501 (2006)

    Article  ADS  Google Scholar 

  30. K. Miyazaki, D. Bedeaux, Physica A 217, 53 (1995)

    Article  ADS  Google Scholar 

  31. G. Subramanian, J. Brady, Physica A 334, 343 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  32. Y. Drossinos, M.W. Reeks, Phys. Rev. E 71, 031113 (2005)

    Article  ADS  Google Scholar 

  33. L. Holzer, J. Bammert, R. Rzehak, W. Zimmermann, Phys. Rev. E 81, 041124 (2010)

    Article  ADS  Google Scholar 

  34. A. Ziehl et al., Phys. Rev. Lett. 103, 230602 (2009)

    Article  ADS  Google Scholar 

  35. R. Simmons, J. Finer, S. Chu, J. Spudich, Biophys. J. 70, 1813 (1996)

    Article  ADS  Google Scholar 

  36. S. Henderson, S. Mitchell, P. Bartlett, Phys. Rev. Lett. 88, 088302 (2002)

    Article  ADS  Google Scholar 

  37. E.R. Dufresne, T.M. Squires, M. Brenner, D.G. Grier, Phys. Rev. Lett. 85, 3317 (2000)

    Article  ADS  Google Scholar 

  38. T. Franosch, S. Jeney, Phys. Rev. E 79, 031402 (2009)

    Article  ADS  Google Scholar 

  39. J. Crocker et al., Phys. Rev. Lett. 85, 888 (2000)

    Article  ADS  Google Scholar 

  40. P.T. Korda, M.B. Taylor, D.G. Grier, Phys. Rev. Lett. 89, 128301 (2002)

    Article  ADS  Google Scholar 

  41. M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature 426, 421 (2003)

    Article  ADS  Google Scholar 

  42. J. Bammert, S. Schreiber, W. Zimmermann, Phys. Rev. E 77, 042102 (2008)

    Article  ADS  Google Scholar 

  43. J. Bammert, W. Zimmermann, Eur. Phys. J. E 28, 331 (2009)

    Article  Google Scholar 

  44. J. Crocker, D. Grier, J. Colloid Interface Sci. 179, 298 (1996)

    Article  Google Scholar 

  45. B. Lukic et al., Phys. Rev. Lett. 95, 160601 (2005)

    Article  ADS  Google Scholar 

  46. M. Atakhorrami, G.H. Koenderink, C.F. Schmidt, F.C. MacKintosh, Phys. Rev. Lett. 95, 208302 (2005)

    Article  ADS  Google Scholar 

  47. S. Chu, Science 253, 861 (1991)

    Article  ADS  Google Scholar 

  48. M. Polin, Y. Roichman, D.G. Grier, Phys. Rev. E 77, 051401 (2008)

    Article  ADS  Google Scholar 

  49. G.G. Stokes, Trans. Cambridge Philos. Soc. IX, 8 (1850)

    Google Scholar 

  50. L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik: Hydrodynamik, 2nd edition (Akademie Verlag, Berlin, 1987)

  51. L. Holzer, Ph.D. Thesis, Universität Bayreuth (2009)

  52. R. Rzehak, W. Zimmermam, Physica A 324, 495 (2003)

    Article  ADS  Google Scholar 

  53. S. Martin, M. Reichert, H. Stark, T. Gisler, Phys. Rev. Lett. 97, 248301 (2006)

    Article  ADS  Google Scholar 

  54. A. Ziehl, Ph.D. Thesis, Universität des Saarlandes (2010)

  55. S. Schreiber, J. Bammert, P. Peyla, W. Zimmermann, in preparation (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bammert, J., Holzer, L. & Zimmermann, W. Dynamics of two trapped Brownian particles: Shear-induced cross-correlations. Eur. Phys. J. E 33, 313–325 (2010). https://doi.org/10.1140/epje/i2010-10675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10675-2

Keywords

Navigation