Skip to main content
Log in

Structural and thermodynamic properties of a linearly perturbed matrix model for RNA folding

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The structural and thermodynamic properties of a matrix model of homo-RNA folding with linear external interaction are studied. The interaction distinguishes paired bases of the homo-RNA chain from the unpaired bases hence dividing the possible RNA structures given by the linear model into two structural regimes. The genus distribution functions show that the total number of structures for any given length of the chain are reduced for the simple linear interaction considered. The partition function of the model exhibits a scaling relation with the matrix model in which the base pairing strength parameter is re-scaled (G. Vernizzi, H. Orland, A. Zee, Phys. Rev. Lett. 94, 168103 (2005)). The thermodynamics of the model are computed for i) largely secondary structures, (with tertiary structures suppressed by a factor 10-4) and ii) secondary plus tertiary structures. A structural change for large even lengths is observed in the free energy and specific heat. This change with largely secondary structures appears much before (with respect to length of the chain) than when all the structures (secondary and pseudoknots) are considered. The appearance of different structures which dominate the ensemble with varying temperatures is also found as a function of the interaction parameter for different types of structures (given by different numbers of pairings).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Westhof, P. Auffinger, Encyclopedia of Analytical Chemistry edited by R.A. Meyers (John Wiley & Sons, Chichester, 2000) pp. 5222

  2. M. Pillsbury, H. Orland, A. Zee, Phys. Rev. E 72, 011911 (2005)

    Article  ADS  Google Scholar 

  3. M. Pillsbury, J.A. Taylor, H. Orland, A. Zee, arXiv:cond-mat/0310505

  4. J.P. Abrashams, M. Van den Berg, E. Van Batenburg, C.W.A. Pleij, Nucleic Acids Res. 18, 3035 (1990)

    Article  Google Scholar 

  5. A.P. Gultyaev, Nucleic Acids Res. 19, 2489 (1991)

    Article  Google Scholar 

  6. A.C. Forster, S. Altman, Cell 62, 407 (1990)

    Article  Google Scholar 

  7. I. Brierley, N.J. Rolley, A.J. Jenner, S.C. Inglis, J. Mol. Biol. 220, 889 (1991)

    Article  Google Scholar 

  8. J.W. Brown, N.R. Pace, Biochimie 73, 689 (1991)

    Article  Google Scholar 

  9. J.D. Dinman, T. Icho, R.B. Wickner, Proc. Natl. Acad. Sci. U.S.A. 88, 174 (1991)

    Article  ADS  Google Scholar 

  10. E.S. Haas, D.P. Morse, J.W. Brown, J.F. Schmidt, N.R. Pace, Science 254, 853 (1991)

    Article  ADS  Google Scholar 

  11. N.M. Wills, R.F. Gesteland, J.F. Atkins, Proc. Natl. Acad. Sci. U.S.A. 88, 6991 (1991)

    Article  ADS  Google Scholar 

  12. M. Chamorro, N. Parkin, H.E. Varmus, Proc. Natl. Acad. Sci. U.S.A. 89, 713 (1992)

    Article  ADS  Google Scholar 

  13. E. Westhof, L. Jaeger, Curr. Opin. Struct. Biol. 2, 327 (1992)

    Article  Google Scholar 

  14. A. Loria, T. Pan, RNA 2, 551 (1996)

    Google Scholar 

  15. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995)

    Article  ADS  Google Scholar 

  16. D. Thirumalai, S.A. Woodson, Acc. Chem. Res. 29, 433 (1996)

    Article  Google Scholar 

  17. U. Bockelmann, B. Essevaz-Roulet, F. Heslot, Phys. Rev. Lett. 79, 4489 (1997)

    Article  ADS  Google Scholar 

  18. U. Bockelmann, B. Essevaz-Roulet, F. Heslot, Phys. Rev. E 58, 2386 (1998)

    Article  ADS  Google Scholar 

  19. J. Liphardt, B. Onoa, S.B. Smith, I. Tinoco, C. Bustamante, Science 292, 733 (2001)

    Article  ADS  Google Scholar 

  20. M. Muller, F. Krzakala, M. Mezard, Eur. Phys. J. E 9, 67 (2002)

    Google Scholar 

  21. P. Leoni, C. Vanderzande, Phys. Rev. E 68, 051904 (2003)

    Article  ADS  Google Scholar 

  22. C. Hyeon, D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 102, 6789 (2005)

    Article  ADS  Google Scholar 

  23. F. David, C. Hagendorf, K.J. Wiese, EPL 78, 68003 (2007)

    Article  ADS  Google Scholar 

  24. H. Orland, A. Zee, Nucl. Phys. B 620, 456 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. G. Vernizzi, H. Orland, A. Zee, Phys. Rev. Lett. 94, 168103 (2005)

    Article  ADS  Google Scholar 

  26. I. Garg, N. Deo, Pramana J. Phys. 73, 533 (2009)

    Article  Google Scholar 

  27. I. Garg, N. Deo, Phys. Rev. E 79, 061903 (2009)

    Article  ADS  Google Scholar 

  28. C. Nappi, Mod. Phys. Lett. A 5, 2773 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. M. Bon, G. Vernizzi, H. Orland, A. Zee, J. Mol. Biol. 379, 900 (2008)

    Article  Google Scholar 

  30. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca and London, 1979) Part C, Chapts. X and XI

  31. E. Riedel, F. Wegner, Z. Phys. 225, 195 (1969)

    Article  ADS  Google Scholar 

  32. E. Riedel, F. Wegner, Phys. Rev. Lett. 24, 730 (1970)

    Article  ADS  Google Scholar 

  33. D.J. Amit, Field Theory, the Renormalization Group, and Critical Phenomenon, 2nd edition (World Scientific, Singapore, 1984) Part II, Chapt. 5

  34. K. Huang, Statistical Mechanics, 2nd edition (John Wiley & Sons, Singapore, 2000) Chapt. 16

  35. M.G. dell'Erba, G.R. Zemba, Phys. Rev. E 79, 011913 (2009)

    Article  ADS  Google Scholar 

  36. R. Bundschuh, T. Hwa, Europhys. Lett. 59, 903 (2002)

    Article  ADS  Google Scholar 

  37. M. Pretti, Phys. Rev. E 74, 051803 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Giel-Pietraszuk, J. Barciszewski, Int. J. Biol. Macromol. 37, 109 (2005)

    Article  Google Scholar 

  39. R.B. Macgregor jr., Biopolymers (Nucl. Acid Sci.) 48, 253 (1998)

    Article  Google Scholar 

  40. R.B. Macgregor jr., Biochem. Biophys. Acta 1595, 266 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Deo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, I., Deo, N. Structural and thermodynamic properties of a linearly perturbed matrix model for RNA folding. Eur. Phys. J. E 33, 359–367 (2010). https://doi.org/10.1140/epje/i2010-10669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10669-0

Keywords

Navigation