Skip to main content
Log in

Free-energy-based method for step size detection of processive molecular motors

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We report a free-energy-based algorithm to estimate the step size of processive molecular motors from noisy, experimental time position traces. In our approach, the problem of estimating step sizes reduces to the evaluation of the free energy of directed lattice polymers in a random potential. The present approach is Bayesian in spirit as we do not aim to determine the most likely underlying time trace but rather to determine the step size and stepping frequency that are most likely to yield the observed data. We test this method on synthetic data for the simple case of noisy traces with fixed underlying step size and Poissonian stepping statistics. We find that the present scheme can work at signal-to-noise levels that are about 40% worse than those where the best existing step detection methods fail. More importantly, the present approach yields a much more accurate estimate of the step size. Although we focus on the case of non-reversing walks with a single step size, we show that we can detect if this assumption is violated. In principle, the method can be extended to more complex stepping scenarios but we find that for noisy data, multi-parameter fits are not reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Nature 365, 721 (2008)

    Article  ADS  Google Scholar 

  2. N.J. Carter, R.A. Cross, Nature 435, 308 (2005)

    Article  ADS  Google Scholar 

  3. S. Toba, T.M. Watanabe, L. Yamaguchi-Okimoto, Y.Y. Toyoshima, H. Higuchi, Proc. Natl. Acad. Sci. U.S.A. 103, 5741 (2006)

    Article  ADS  Google Scholar 

  4. H. Yardimci, M. van Duffelen, Y. Mao, S.S. Rosenfeld, P.R. Selvin, Proc. Natl. Acad. Sci. U.S.A. 105, 6016 (2008)

    Article  ADS  Google Scholar 

  5. B.C. Carter, M. Vershinin, S.P. Gross, Biophys. J. 94, 306 (2008)

    Article  Google Scholar 

  6. J.W. Kerssemakers, E.L. Munteanu, L. Laan, T.L. Noetzel, M.E. Janson, M. Dogterom, Nature 442, 709 (2006)

    Article  ADS  Google Scholar 

  7. B. Kalafut, K. Visscher, Comput. Phys. Commun. 179, 716 (2008)

    Article  ADS  Google Scholar 

  8. W. Hua, E.C. Young, M.L. Fleming, J. Gelles, Nature 388, 390 (1997)

    Article  ADS  Google Scholar 

  9. C.J. Lawrence, R.K. Dawe, K.R. Christie, D.W. Cleveland, S.C. Dawson, S.A. Endow, L.S.B. Goldstein, H.V. Goodson, N. Hirokawa, J. Howard, R.L. Malmberg, J.R. McIntosh, H. Miki, T.J. Mitchison, Y. Okada, A.S.N. Reddy, W.M. Saxton, M. Schliwa, J.M. Scholey, R.D. Vale, C.E. Walczak, L. Wordeman, J. Cell Biol. 167, 19 (2004)

    Article  Google Scholar 

  10. M. Rief, R.S. Rock, A.D. Mehta, M.S. Mooseker, R.E. Cheney, J.A. Spudich, Proc. Natl. Acad. Sci. U.S.A. 97, 9482 (2000)

    Article  ADS  Google Scholar 

  11. David J.C. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, 2003)

  12. G.C.A.M. Mooij, D. Frenkel, Mol. Phys. 74, 41 (1991)

    Article  ADS  Google Scholar 

  13. B. Bozorgui, D. Frenkel, Phys. Rev. E 75, 036708 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Frenkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozorgui, B., Shundyak, K., Cox, S.J. et al. Free-energy-based method for step size detection of processive molecular motors. Eur. Phys. J. E 31, 411–417 (2010). https://doi.org/10.1140/epje/i2010-10590-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10590-6

Keywords

Navigation