Skip to main content
Log in

Collective properties of water confined in carbon nanotubes: A computer simulation study

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The collective properties of water confined in the (10,10), (8,8) and (6,6) carbon nanotubes are studied by analysing the longitudinal-current autocorrelation function, calculated from computer-simulated trajectories. The corresponding spectra clearly show the presence of two excitations, but their behaviour is quite different from that observed in the case of bulk water. Instead of the strong positive dispersion of the hydrodynamic sound mode characteristic of bulk water (the fast-sound phenomenon), the sound dispersion relation of confined water is observed to flatten into a non-propagating mode, while a second excitation appears at a higher frequency. This behaviour is analysed in terms of the localized oscillation modes of the hydrogen-bond network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Stanley, J. Teixeira, J. Chem. Phys. 73, 3404 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Angell, Annu. Rev. Phys. Chem. 34, 593 (1983)

    Article  ADS  Google Scholar 

  3. G. Ruocco, F. Sette, Condens. Matter Phys. 1, 29 (2008)

    Google Scholar 

  4. M. Rovere, P. Gallo, Eur. Phys. J. E 12, 77 (2003)

    Article  Google Scholar 

  5. W. Saenger, Annu. Rev. Biophys. Chem. 16, 93 (1987)

    Article  Google Scholar 

  6. B. Bagchi, Chem. Rev. 105, 3197 (2005)

    Article  Google Scholar 

  7. J. Swenson, H. Jansson, R. Bergman, Phys. Rev. Lett. 96, 247802 (2006)

    Article  ADS  Google Scholar 

  8. G. Garberoglio, M. Sega, R. Vallauri, J. Chem. Phys. 126, 125103 (2007)

    Article  ADS  Google Scholar 

  9. H. Cheng, Q. Yang, C. Liu, Carbon 39, 1447 (2001)

    Article  Google Scholar 

  10. M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y.M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier et al., J. Alloys Comp. 330-332, 654 (2002)

    Article  Google Scholar 

  11. G. Garberoglio, R. Vallauri, Phys. Lett. A 316, 407 (2003)

    Article  ADS  Google Scholar 

  12. G. Garberoglio, R. Vallauri, J. Mol. Liq. 117, 43 (2005)

    Article  Google Scholar 

  13. G. Hummer, J. Rasaiah, J. Noworyta, Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  14. A.I. Kolesnikov, J.M. Zanotti, C.K. Loong, P. Thiyagarajan, A.P. Moravsky, R.O. Loutfy, C.J. Burnham, Phys. Rev. Lett. 93, 035503 (2004)

    Article  ADS  Google Scholar 

  15. E. Mamontov, C.J. Burnham, S.H. Chen, A.P. Moravsky, C.K. Loong, N.R. de Souza, A.I. Kolesnikov, J. Chem. Phys. 124, 194703 (2006)

    Article  ADS  Google Scholar 

  16. X.Q. Chu, A.I. Kolesnikov, A.P. Moravsky, V. Garcia-Sakai, S.H. Chen, Phys. Rev. E 76, 021505 (2007)

    Article  ADS  Google Scholar 

  17. M. Gordillo, J. Martí, Chem. Phys. Lett. 329, 341 (2000)

    Article  ADS  Google Scholar 

  18. J. Martí, M.C. Gordillo, J. Chem. Phys. 114, 10486 (2001)

    Article  ADS  Google Scholar 

  19. J. Martí, M.C. Gordillo, Phys. Rev. E 64, 021504 (2001)

    Article  ADS  Google Scholar 

  20. L. Yingchun, W. Qi, Phys. Rev. B 72, 085420 (2005)

    Article  Google Scholar 

  21. A. Striolo, Nano Lett. 6, 633 (2006)

    Article  ADS  Google Scholar 

  22. A. Alexiadis, S. Kassinos, Chem. Rev. 108, 5014 (2008)

    Article  Google Scholar 

  23. F. Sette, G. Ruocco, M. Krisch, U. Bergmann, C. Masciovecchio, V. Mazzacurati, G. Signorelli, R. Verbeni, Phys. Rev. Lett. 75, 850 (1995)

    Article  ADS  Google Scholar 

  24. F. Sette, G. Ruocco, M. Krisch, C. Masciovecchio, R. Verbeni, U. Bergmann, Phys. Rev. Lett. 77, 83 (1996)

    Article  ADS  Google Scholar 

  25. G. Monaco, A. Cunsolo, G. Ruocco, F. Sette, Phys. Rev. E 60, 5505 (1999)

    Article  ADS  Google Scholar 

  26. C. Petrillo, F. Sacchetti, B. Dorner, J.B. Suck, Phys. Rev. E 62, 3611 (2000)

    Article  ADS  Google Scholar 

  27. F. Sacchetti, J.B. Suck, C. Petrillo, B. Dorner, Phys. Rev. E 69, 061203 (2004)

    Article  ADS  Google Scholar 

  28. E. Pontecorvo, M. Krisch, A. Cunsono, G. Monaco, A. Mermet, R. Verbeni, F. Sette, G. Ruocco, Phys. Rev. E 71, 011501 (2005)

    Article  ADS  Google Scholar 

  29. S. Santucci, D. Fioretto, L. Comez, A. Gessini, C. Masciovecchio, Phys. Rev. Lett. 97, 225701 (2006)

    Article  ADS  Google Scholar 

  30. M. Wojcik, E. Clementi, J. Chem. Phys. 85, 6085 (1986)

    Article  ADS  Google Scholar 

  31. M. Ricci, D. Rocca, G. Ruocco, R. Vallauri, Phys. Rev. A 40, 7226 (1989)

    Article  ADS  Google Scholar 

  32. U. Balucani, G. Ruocco, M. Sampoli, A. Torcini, R. Vallauri, Chem. Phys. Lett. 209, 408 (1993)

    Article  ADS  Google Scholar 

  33. U. Balucani, G. Ruocco, A. Torcini, R. Vallauri, Phys. Rev. E 47, 1677 (1993)

    Article  ADS  Google Scholar 

  34. F. Sciortino, S. Sastry, J. Chem. Phys. 100, 3881 (1994)

    Article  ADS  Google Scholar 

  35. D. Bertolini, A. Tani, Phys. Rev. E 51, 1091 (1995)

    Article  ADS  Google Scholar 

  36. U. Balucani, J. Brodholt, R. Vallauri, J. Phys.: Condens. Matter 8, 9269 (1996)

    Article  ADS  Google Scholar 

  37. S. Miura, Mol. Phys. 87, 1405 (1996)

    Article  ADS  Google Scholar 

  38. M. Sampoli, G. Ruocco, F. Sette, Phys. Rev. Lett. 79, 1678 (1997)

    Article  ADS  Google Scholar 

  39. W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey, M. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  40. M. Allen, D. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987)

  41. W. Steele, J. Phys. Chem. 82, 817 (1978)

    Article  Google Scholar 

  42. S. Reich, C. Thomson, J. Maultzsch, Carbon Nanotubes (Wiley-VCH, 2005) Chapt. 2

  43. I. Brovchenko, A. Geiger, A. Oleinikova, D. Paschek, Eur. Phys. J. E 12, 69 (2003)

    Article  Google Scholar 

  44. H. Berendsen, J. Postma, W. van Gunsteren, A.D. Nola, J. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  45. A. Mudi, C. Chakravarty, Mol. Phys. 102, 681 (2004)

    Article  ADS  Google Scholar 

  46. U. Balucani, J. Brodholt, R. Vallauri, J. Phys.: Condens. Matter 8, 6138 (1996)

    ADS  Google Scholar 

  47. G. Sutmann, R. Vallauri, J. Phys.: Condens. Matter 10, 9231 (1998)

    Article  ADS  Google Scholar 

  48. G. Garberoglio, R. Vallauri, G. Sutmann, J. Chem. Phys. 117, 3278 (2002)

    Article  ADS  Google Scholar 

  49. D.G. Levitt, Phys. Rev. A 8, 3050 (1973)

    Article  ADS  Google Scholar 

  50. B. Mukherjee, P.K. Maiti, C. Dasgupta, A.K. Sood, J. Chem. Phys. 126, 124704 (2007)

    Article  ADS  Google Scholar 

  51. S. Sastry, F. Sciortino, H. Stanley, J. Chem. Phys. 95, 7775 (1991)

    Article  ADS  Google Scholar 

  52. J. Marti, G. Nagy, M.C. Gordillo, E. Guàrdia, J. Chem. Phys. 124, 094703 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Garberoglio.

Additional information

Dedicated to Prof. Renzo Vallauri on the occasion of his retirement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garberoglio, G. Collective properties of water confined in carbon nanotubes: A computer simulation study. Eur. Phys. J. E 31, 73–80 (2010). https://doi.org/10.1140/epje/i2010-10552-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10552-0

Keywords

Navigation