Skip to main content
Log in

Frequency-dependent deformation of liquid crystal droplets in an external electric field

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Nematic droplets suspended in the isotropic phase of the same substance were subjected to alternating electrical fields of varying frequency. To keep the system at a constant nematic/isotropic volume ratio with constant droplet size, we carefully kept the temperature in the isotropic/nematic coexistence region, which was broadened by adding small amounts of a non-mesogenic liquid. Whereas the nematic droplets remained spherical at low (in the order of 10 Hz) and high frequencies (in the order of 1 kHz), at intermediate frequencies we observed a marked flattening of the droplets in the plane perpendicular to the applied field. Droplet deformation occurred both in liquid crystals (LCs) with positive and negative dielectric anisotropy. The experimental data can be quantitatively modelled with a combination of the leaky dielectric model and screening of the applied electric field due to finite conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.P. Crawford, M. Zumer, Liquid Crystals in Complex Geometries (Taylor and Francis, London, 1996).

    Google Scholar 

  2. S. Candau, P. Le Roy, F. Debeauvais, Mol. Cryst. Liq. Cryst. 23, 283 (1973).

    Article  Google Scholar 

  3. J.W. Doane, N.A. Vaz, B.-G. Wu, S. Zumer, Appl. Phys. Lett. 48, 268 (1986).

    Article  ADS  Google Scholar 

  4. P.K. Chan, Liq. Cryst. 26, 1777 (1999).

    Article  Google Scholar 

  5. T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E 57, 610 (1998).

    Article  ADS  Google Scholar 

  6. P.V. Dolganov, H.T. Nguyen, G. Joly, V.K. Dolganov, P. Cluzeau, EPL 78, 66001 (2007).

    Article  ADS  Google Scholar 

  7. C.S. Park, N.A. Clark, R.D. Noble, Phys. Rev. Lett. 72, 1838 (1994).

    Article  ADS  Google Scholar 

  8. B.I. Lev, V.G. Nazarenko, A.B. Nych, D. Schur, P.M. Yamamoto, H. Yukuyama, Phys. Rev. E 64, 021706 (2001).

    Article  ADS  Google Scholar 

  9. Y. Wu, W. Yu, C. Zhou, Y. Xu, Phys. Rev. E 75, 041706 (2007).

    Article  ADS  Google Scholar 

  10. R. El-Sadek, M. Roushdy, J. Magda, Langmuir 23, 7907 (2007).

    Article  Google Scholar 

  11. D. Coates, J. Mater. Chem. 5, 2063 (1995).

    Article  Google Scholar 

  12. L. Bouteiller, P. LeBarny, Liq. Cryst. 21, 157 (1996).

    Article  Google Scholar 

  13. T.J. Bunning, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland, Annu. Rev. Mater. Sci. 30, 83 (2000).

    Article  Google Scholar 

  14. S. Tjong, Mater. Sci. Eng. Rep. 41, 1 (2003).

    Article  Google Scholar 

  15. Y.J. Jeon, Y. Bingzhu, J.T. Rhee, D.L. Cheung, M. Jamil, Macromol. Theory Simul. 16, 643 (2007).

    Article  Google Scholar 

  16. H. Stark, Phys. Rep. 351, 387 (2001).

    Article  ADS  Google Scholar 

  17. C. Bohley, R. Stannarius, Soft Matter 4, 683 (2008).

    Article  Google Scholar 

  18. H.-W. Chiu, T. Kyu, J. Chem. Phys. 103, 7471 (1995).

    Article  ADS  Google Scholar 

  19. C. Shen, T. Kyu, J. Chem. Phys. 102, 556 (1995).

    Article  ADS  Google Scholar 

  20. Z. Lin, H. Zhang, Y. Yang, Phys. Rev. E 58, 5867 (1998).

    Article  ADS  Google Scholar 

  21. S. DasGupta, P. Chattopadhyay, S.K. Roy, Phys. Rev. E 63, 041703 (2001).

    Article  ADS  Google Scholar 

  22. D. Langevin, M.A. Bouchiat, Mol. Cryst. Liq. Cryst. 22, 317 (1973).

    Article  Google Scholar 

  23. S. Faetti, V. Palleschi, Phys. Rev. A 30, 3241 (1984).

    Article  ADS  Google Scholar 

  24. R. Williams, Mol. Cryst. Liq. Cryst. 35, 349 (1976).

    Article  Google Scholar 

  25. H. Yokoyama, S. Kobayashi, H. Kamei, Mol. Cryst. Liq. Cryst. 129, 109 (1985).

    Article  Google Scholar 

  26. F. Roussel, J.-M. Buisine, U. Maschke, X. Coqueret, F. Benmouna, Phys. Rev. E 62, 2310 (2000).

    Article  ADS  Google Scholar 

  27. B. Ullrich, E. Ilska, N. Höhn, D. Vollmer, Prog. Colloid Polym. Sci. 133, 142 (2006).

    Article  Google Scholar 

  28. L. Antl, J.W. Goodwin, R.D. Hill, R.H. Ottewill, S.M. Owens, S. Papworth, J.A. Waters, Colloid Surf. 17, 67 (1986).

    Article  Google Scholar 

  29. G. Bosma, C. Pathmamanoharan, E.H.A. de Hoog, W.K. Kegel, A. van Blaaderen, H.N.W. Lekkerkerker, J. Colloid Interface Sci. 245, 292 (2002).

    Article  Google Scholar 

  30. J. Deschamps, J.P.M. Trusler, G. Jackson, J. Phys. Chem. B 112, 3918 (2008).

    Article  Google Scholar 

  31. R. Ondris-Crawford, E.P. Boyko, B.G. Wagner, J.H. Erdmann, S. Zumer, J.W. Doane, J. Appl. Phys. 69, 6380 (1991).

    Article  ADS  Google Scholar 

  32. D. Diguet, F. Rondelez, G. Durand, C. R. Acad. Sci. Paris, Ser. B 271, 954 (1970).

    Google Scholar 

  33. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1977).

    Google Scholar 

  34. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

    Google Scholar 

  35. J. Jadzyn, P. Kêdziora, Mol. Cryst. Liq. Cryst. 145, 17 (1987).

    Article  Google Scholar 

  36. I. Haller, J. Chem. Phys. 57, 1400 (1972).

    Article  ADS  Google Scholar 

  37. I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor and Francis, London, 2004).

    Google Scholar 

  38. G. Taylor, Proc. R. Soc. London, Ser. A 280, 383 (1964).

    Article  MATH  ADS  Google Scholar 

  39. J.C. Baygents, N.J. Rivette, H.A. Stone, J. Fluid Mech. 368, 359 (1998).

    Article  MATH  ADS  Google Scholar 

  40. G. Taylor, Proc. R. Soc. London, Ser. A 291, 159 (1966).

    Article  ADS  Google Scholar 

  41. S. Torza, R.G. Cox, S.G. Mason, Philos. Trans. R. Soc. London, Ser. A 2969, 295 (1971).

    ADS  Google Scholar 

  42. O Vizika, D.A. Saville, J. Fluid Mech. 239, 1 (1992).

    Article  ADS  Google Scholar 

  43. D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  44. N. Bentenitis, S. Krause, K. Benghanem, Langmuir 21, 790 (2005).

    Article  Google Scholar 

  45. A. Fernández, G. Tryggvason, J. Che, S.L. Ceccio, Phys. Fluids 17, 093302 (2005).

    Article  ADS  Google Scholar 

  46. J. Zhang, D.Y. Kwok, J. Comput. Phys. 206, 150 (2005).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Auernhammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auernhammer, G.K., Zhao, J., Ullrich, B. et al. Frequency-dependent deformation of liquid crystal droplets in an external electric field. Eur. Phys. J. E 30, 387 (2009). https://doi.org/10.1140/epje/i2009-10538-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10538-y

Keywords

Navigation