Skip to main content
Log in

Relationship between vibrations and dynamical heterogeneity in a model glass former: Extended soft modes but local relaxation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the relation between short-time vibrational modes and long-time relaxational dynamics in a kinetically constrained lattice gas with harmonic interactions between neighbouring particles. We find a correlation between the location of the low- (high-) frequency vibrational modes and regions of high (low) propensity for motion. This is similar to what was observed in continuous force systems, but our interpretation is different: in our case relaxation is due to localised excitations which propagate through the system; these localised excitations act as background disorder for the elastic network, giving rise to anomalous vibrational modes. Our results provide an example whereby a correlation between spatially extended low-frequency modes and high-propensity regions does not imply that relaxational dynamics originates in extended soft modes but rather belies their common origin. We consider other measures of elastic heterogeneity, such as non-affine displacement fields and mode localisation lengths, and discuss implications of our results to interpretations of dynamic heterogeneity more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews on dynamic heterogeneity see: H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999); M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000); S.C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000); R. Richert, J. Phys. Condens. Matter 14, R703 (2002); H.C. Andersen, Proc. Natl. Acad. Sci. U.S.A. 102, 6686 (2005).

    Article  ADS  Google Scholar 

  2. For reviews on the glass transition see, M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996); C.A. Angell, Science 267, 1924 (1995); P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001).

    Article  Google Scholar 

  3. W.A. Phillips (Editor), Amorphous solids, Low temperature properties (Springer, Berlin) 1981; C.A. Angell et al., J. Appl. Phys. 88, 3113 (2000); K. Binder, W. Kob, in Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, Singapore, 2005).

    Google Scholar 

  4. See also, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 95, 098301 (2005); M. Wyart, S.R. Nagel, T.A. Witten, Europhys. Lett. 72, 486 (2005).

    Article  ADS  Google Scholar 

  5. C. Brito, M. Wyart, J. Stat. Mech. L08003 (2007).

  6. C. Brito, M. Wyart, arXiv:0804.2439.

  7. A. Widmer-Cooper et al., Nature Phys. 4, 711 (2008).

    Article  ADS  Google Scholar 

  8. F. Ritort, P. Sollich, Adv. Phys. 52, 219 (2003).

    Article  ADS  Google Scholar 

  9. A. Widmer-Cooper, P. Harrowell, H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004).

    Article  ADS  Google Scholar 

  10. L.O. Hedges, J.P. Garrahan, J. Phys.: Condens. Matter 19, 205124 (2007).

    Article  ADS  Google Scholar 

  11. J. Jäckle, A. Krönig, J. Phys.: Condens. Matter 6, 7633 (1994).

    Article  Google Scholar 

  12. C. Toninelli, G. Biroli, D.S. Fisher, Phys. Rev. Lett. 92, 185504 (2004).

    Article  ADS  Google Scholar 

  13. A.C. Pan, J.P. Garrahan, D. Chandler, Phys. Rev. E. 72, 041106 (2005).

    Article  ADS  Google Scholar 

  14. W. Kob, H.C. Andersen, Phys. Rev. E 48, 4364 (1993).

    Article  ADS  Google Scholar 

  15. J. Kurchan, L. Peliti, M. Sellito, Europhys. Lett. 39, 365 (1997).

    Article  ADS  Google Scholar 

  16. D.J. Ashton, PhD Thesis, University of Nottingham, (2008) http://etheses.nottingham.ac.uk/623/.

  17. M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983); S. Feng, P.N. Sen, Phys. Rev. Lett. 52, 216 (1984); A. Feng, M.F. Thorpe, E. Garboczi, Phys. Rev. B 31, 276 (1985).

    Article  ADS  Google Scholar 

  18. M.F. Thorpe, E.J. Garboczi, Phys. Rev. B 35, 8579 (1987).

    Article  ADS  Google Scholar 

  19. Z. Zeravcic, W. van Saarloos, D.R. Nelson, EPL 83, 44001 (2008).

    Article  ADS  Google Scholar 

  20. N. Hatano, D.R. Nelson, Phys. Rev. Lett. 77, 570 (1996).

    Article  ADS  Google Scholar 

  21. B.A. DiDonna, T.C. Lubensky, Phys. Rev. E 72, 066619 (2005).

    Article  ADS  Google Scholar 

  22. F. Leonforte, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. Lett. 97, 055501 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Ashton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashton, D.J., Garrahan, J.P. Relationship between vibrations and dynamical heterogeneity in a model glass former: Extended soft modes but local relaxation. Eur. Phys. J. E 30, 303 (2009). https://doi.org/10.1140/epje/i2009-10531-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10531-6

PACS

Navigation