Skip to main content
Log in

Distribution of DNA fragment sizes after irradiation with ions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Ionizing radiation is responsible for production of double-strand breaks (DSBs) in a DNA structure. In contrast to sparsely ionizing radiation, densely ionizing radiation produces DSBs that are non-randomly distributed along the DNA molecule and can form clusters of various size. The paper discusses minimalistic models that describe observable patterns of fragment length in DNA segments irradiated with heavy ions and applies the formalism to interpret the recent experimental data collected by use of atomic force microscope (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.L. Alpen, Radiation Biophysics (Academic Press, San Diego, 1998).

    Google Scholar 

  2. G. Kraft, Nucl. Sci. Appl. 1, 1 (1987).

    ADS  Google Scholar 

  3. C. Von Sonntag, The Chemical Basis of Radiation Biology (Taylor and Francis, London, 1987).

    Google Scholar 

  4. R. Roots, W. Holley, A. Chatterjee, E. Rachal, G. Kraft, Adv. Space Res. 9, 45 (1989).

    Article  ADS  Google Scholar 

  5. G. Taucher-Scholz, G. Kraft, Radiat. Res. 151, 595 (1999).

    Article  Google Scholar 

  6. S. Brons, B. Jakob, G. Taucher-Scholz, G. Kraft, Phys. Med. 17, 217 (2001).

    Google Scholar 

  7. D.T. Goodhead, Int. J. Radiat. Biol. 65, 7 (1994).

    Article  Google Scholar 

  8. G. Iliakis, D. Blöcher, L. Metzger, G. Pantelias, Int. J. Radiat. Biol. 59, 927 (1991).

    Article  Google Scholar 

  9. D. Blöcher, Int. J. Radiat. Biol. 57, 7 (1990).

    Article  Google Scholar 

  10. K. Psonka, E. Gudowska-Nowak, S. Brons, T. Elsässer, M. Heiss, G. Taucher-Scholz, Adv. Space Res. 39, 1043 (2007).

    Article  ADS  Google Scholar 

  11. K. Psonka, S. Brons, M. Heiss, E. Gudowska-Nowak, G. Taucher-Scholz, J. Phys.:Condens. Matter 17, S1443 (2005).

    Article  ADS  Google Scholar 

  12. T. Elsässer, M. Scholz, G. Taucher-Scholz, S. Brons, K. Psonka, E. Gudowska-Nowak, in Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale, edited by J. Connerade, A. Solov'yov (Imperial College Press, 2008) pp. 389–398.

  13. D. Pang, J.E. Rodgers, B.L. Berman, S. Chasovskikh, A. Dritschilo, Radiat. Res. 164, 755 (2005).

    Article  Google Scholar 

  14. H. Fakir, R.K. Sachs, B. Stenerlöw, W. Hofmann, Radiat. Res. 166, 917 (2006).

    Article  Google Scholar 

  15. S. Brons, G. Taucher-Scholz, M. Scholz, G. Kraft, Radiat. Environ. Biophys. 42, 63 (2003).

    Article  Google Scholar 

  16. M. Pinto, K.M. Prise, B.D. Michael, Radiat. Res. 162, 453 (2004).

    Article  Google Scholar 

  17. W.C. Parke, Phys. Rev. E. 56, 5819 (1997).

    Article  ADS  Google Scholar 

  18. R. Sachs, D.J. Brenner, P.J. Hahnfeldt, R. Hlatky, Int. J. Radiat. Biol. 74, 185 (1998).

    Article  Google Scholar 

  19. V. Michalik, Int. J. Radiat. Biol. 62, 9 (1992).

    Article  Google Scholar 

  20. A. Kraxenberger, A.A. Friedl, A.M. Kellerer, Electrophoresis 15, 128 (1994).

    Article  Google Scholar 

  21. A.L. Ponomarev, M.N. Belli, P.J. Hahnfeldt, L. Hlatky, R. Sachs, F. Cucinotta, Radiat. Res. 166, 908 (2006).

    Article  Google Scholar 

  22. E. Gudowska-Nowak, S. Ritter, G. Taucher-Scholz, G. Kraft, Acta Phys. Pol. B 31, 1109 (2000).

    ADS  Google Scholar 

  23. O. Sotolongo-Costa, F. Guzman, J.C. Antoranz, G.J. Rodgers, O. Rodriguez, J.D.T. Arruda Neto, A. Deepman arXiv:cond-mat/0201289; O. Sotolongo-Costa, F. Guzman, G.J. Rodgers, Rev. Cubana Fís. 21, 29 (2004).

    Google Scholar 

  24. R.G. Palmer, D. Stein, E.S. Abrahams, P.W. Anderson, Phys. Rev. Lett 53, 958 (1984).

    Article  ADS  Google Scholar 

  25. J. Klafter, G.M.F. Shlesinger, Proc. Natl. Acad. Sci. U.S.A. 83, 848 (1986).

    Article  ADS  Google Scholar 

  26. N.L. Johnson, S. Kotz, A.W. Kemp, Univariate Discrete Distributions (Wiley, New York, 2005); R.C. Gupta, S.H. Ong, Comp. Stat. Data Anal. 45, 287 (2004).

    Book  MATH  Google Scholar 

  27. P. Embrechts, C. Kluppelberg, T. Mikosch, Modeling Extremal Events for Insurance and Finance (Springer Verlag, Berlin, 1997).

    Google Scholar 

  28. T. Elsässer, S. Brons, K. Psonka, M. Scholz, E. Gudowska-Nowak, G. Taucher-Scholz, Radiat. Res. 169, 649 (2008).

    Article  Google Scholar 

  29. K. Weron, M. Kotulski, J. Stat. Phys. 88, 1241 (1997).

    Article  MATH  ADS  Google Scholar 

  30. A. Jurlewicz, K. Weron, Chaos, Solitons Fractals 11, 303 (2000); B. Szabat, P. Hetman, K. Weron, Physica A 370, 346 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Blumenfeld, B.B. Mandelbrot, Phys. Rev. E. 56, 112 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  32. B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, Mass., 1954).

    MATH  Google Scholar 

  33. N. Suzuki, Prog. Theor. Phys. 51, 1629 (1974).

    Article  ADS  Google Scholar 

  34. D. Ghosh, A. Deb, P.K. Haldar, S.R. Sahoo, D. Maity, Europhys. Lett. 65, 311 (2004).

    Article  ADS  Google Scholar 

  35. T. Gharib, W. Bauer, S. Pratt, Phys. Lett. B. 444, 231 (1998).

    Article  ADS  Google Scholar 

  36. S. Karlin, H. Taylor, First Course in Stochastic Processes (Academic Press, New York, 1985).

    Google Scholar 

  37. L. Hlatky, R.K. Sachs, M. Vazquez, M.N. Cornforth, BioEssays 24, 714 (2002).

    Article  Google Scholar 

  38. B. Rydberg, Radiat. Res. 145, 200 (1996).

    Article  ADS  Google Scholar 

  39. M. Löbrich, P.K. Cooper, B. Rydberg, Int. J. Radiat. Biol. 70, 493 (1996).

    Article  Google Scholar 

  40. M. Krämer, G. Kraft, Radiat. Environ. Biophys. 33, 91 (1994).

    Article  Google Scholar 

  41. M. Scholz, G. Kraft, Adv. Space Res. 18, 5 (1995).

    Article  ADS  Google Scholar 

  42. J.U. Schmollack, S. Klaumuenzer, J. Kiefer, Radiat. Res. 153, 469 (2000).

    Article  Google Scholar 

  43. F. Ballarini, D. Alloni, A. Facoetti, A. Ottolenghi, New J. Phys. 10, 075008 (2008).

    Article  ADS  Google Scholar 

  44. K.S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993).

    MATH  Google Scholar 

  45. W. Ebeling, I. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonlinear Systems Far From Equilibrium (World Scientific, Singapore, 2005).

    Google Scholar 

  46. R.N. Pillai, Ann. Inst. Stat. Math. 42, 157 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  47. E. Gudowska-Nowak, K. Weron, Phys. Rev. E. 65, 011103 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gudowska-Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudowska-Nowak, E., Psonka-Antończyk, K., Weron, K. et al. Distribution of DNA fragment sizes after irradiation with ions. Eur. Phys. J. E 30, 317 (2009). https://doi.org/10.1140/epje/i2009-10522-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10522-7

PACS

Navigation