Skip to main content
Log in

Effects of magnesium salt concentrations on B-DNA overstretching transition

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this study, we use optical tweezers to investigate the ionic effects of magnesium salt solutions on the overstretching transition of single B-DNA molecules. The experimental data are compared with those in sodium salt solutions. The overstretching transition force increases when the NaCl or MgCl2 salt concentration increases. Magnesium cations have much stronger effects on the overstretching transition force than sodium cations. For both NaCl and MgCl2 salt solutions, the overstretching transition force is linear with the natural logarithm of salt concentration, which confirms the theory proposed in previous paper. The modified ZZO model is applied to study the electrostatic contribution of magnesium salt solutions to the overstretching transition of single B-DNA molecules. The consistency between the experimental data and analytical results shows that the modified ZZO model can simulate the transition behavior of single B-DNA molecules in different NaCl and MgCl2 salt solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.B. Smith, L. Finzi, C. Bustamante, Science 258, 1122 (1992).

    Google Scholar 

  2. T.R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon, V. Croquette, Science 271, 1835 (1996).

  3. J. Yan, D. Skoko, J.F. Marko, Phys. Rev. E 70, 011905 (2004).

    Google Scholar 

  4. T.T. Perkins, D.E. Smith, R.G. Larson, S. Chu, Science 268, 83 (1995).

    Google Scholar 

  5. M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Biophys. J. 72, 1335 (1997).

    Google Scholar 

  6. M.C. Williams, J.R. Wenner, I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 874 (2001).

    Google Scholar 

  7. M.C. Williams, I. Rouzina, V.A. Bloomfield, Acc. Chem. Res. 35, 159 (2002).

    Google Scholar 

  8. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.L. Viovy, D. Chatenay, F. Caron, Science 271, 792 (1996).

  9. S.B. Smith, Y.J. Cui, C. Bustamante, Science 271, 795 (1996).

    Google Scholar 

  10. C.G. Baumann, S.B. Smith, V.A. Bloomfield, C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 94, 6185 (1997).

    Google Scholar 

  11. J.R. Wenner, M.C. Williams, I. Rouzina, V.A. Bloomfield, Biophys. J. 82, 3160 (2002).

    Google Scholar 

  12. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, H. Gaub, Biophys. J. 78, 1997 (2000).

  13. M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nature Struct. Biol. 6, 346 (1999).

    Google Scholar 

  14. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995).

  15. R. Podgornik, P.L. Hansen, V.A. Parsegian, J. Chem. Phys. 113, 9343 (2000).

    Google Scholar 

  16. A. Vologodskii, Macromolecules 27, 5623 (1994).

  17. I. Rouzina, V.A. Bloomfield, Biophys. J. 77, 3242 (1999).

    Google Scholar 

  18. I. Rouzina, V.A. Bloomfield, Biophys. J. 77, 3252 (1999).

    Google Scholar 

  19. I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 882 (2001).

    Google Scholar 

  20. I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 894 (2001).

    Google Scholar 

  21. O. Punkkinen, P.L. Hansen, L. Miao, I. Vattulainen, Biophys. J. 89, 967 (2005).

    Google Scholar 

  22. H. Fu, C.G. Koh, H. Chen, Eur. Phys. J. E 17, 231 (2005).

    Google Scholar 

  23. R. Dong, X. Yan, G. Yu, S. Liu, Phys. Lett. A 318, 600 (2003).

    Google Scholar 

  24. S. Cocco, J. Yan, J.-F. Lger, D. Chatenay, J.F. Marko, Phys. Rev. E 70, 011910 (2004).

    Google Scholar 

  25. H. Fu, C.G. Koh, H. Chen, C.T. Lim, Solid State Phenom. 121-123, 1093 (2007).

    Google Scholar 

  26. H.J. Zhou, Y. Zhang, Z.C. Ou-yang, Phys. Rev. E. 62, 1045 (2000).

    Google Scholar 

  27. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, Steven Chu, Opt. Lett. 11, 288 (1986).

    Google Scholar 

  28. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer Academic, Dordecht, 1991).

  29. K. Svoboda, S.M. Block, Ann. Rev. Biophys. Biomol. Struct. 23, 47 (1994).

    Google Scholar 

  30. Roland R. Netz, Macromolecules 34, 7522 (2001).

  31. T.K. Chiu, R.E. Dickerson, J. Mol. Biol. 301, 915 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Chen, H., Koh, C.G. et al. Effects of magnesium salt concentrations on B-DNA overstretching transition. Eur. Phys. J. E 29, 45–49 (2009). https://doi.org/10.1140/epje/i2009-10448-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10448-0

PACS

Navigation