Skip to main content
Log in

Phenomenological theory of structural relaxation based on a thermorheologically complex relaxation time distribution

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The aim of this work is to explore the consequences on the kinetics of structural relaxation of considering a glass-forming system to consist of a series of small but macroscopic relaxing regions that evolve independently from each other towards equilibrium in the glassy state. The result of this assumption is a thermorheologically complex model. In this approach each relaxing zone has been assumed to follow the Scherer-Hodge model for structural relaxation (with the small modification of taking a linear dependence of configurational heat capacity with temperature). The model thus developed contains four fitting parameters. A least-squares search routine has been used to find the set of model parameters that fit simultaneously four DSC thermograms in PVAc after different thermal histories. The computersimulated curves are compared with those obtained with Scherer-Hodge model and the model proposed by Gómez and Monleón. The evolution of the relaxation times during cooling or heating scans and also during isothermal annealing below the glass transition has been analysed. It has been shown that the relaxation times distribution narrows in the glassy state with respect to equilibrium. Isothermal annealing causes this distribution to broaden during the process to finally attain in equilibrium the shape defined at temperatures above T g .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, J. Polym. Sci. Polym. Phys. 17, 1097 (1979).

    Article  Google Scholar 

  2. C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. DeBolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Easteal, P.B. Elterman, R.P. Moeller, H. Sasabe, Ann. N.Y. Acad. Sci. 279, 15 (1976).

    Article  ADS  Google Scholar 

  3. G.W. Scherer, J. Am. Ceram. Soc. 67, 504 (1984).

    Article  Google Scholar 

  4. I.M. Hodge, Macromolecules 20, 2897 (1987).

    Article  ADS  Google Scholar 

  5. I.M. Hodge, J. Non-Cryst. Solids 169, 211 (1994).

    Article  ADS  Google Scholar 

  6. J.M. Hutchinson, Prog. Polym. Sci. 20, 703 (1995).

    Article  Google Scholar 

  7. O.S. Narayanaswamy, J. Am. Ceram. Soc. 54, 491 (1971).

    Article  Google Scholar 

  8. A.M. Tool, J. Am. Ceram. Soc. 29, 240 (1946).

    Article  Google Scholar 

  9. J.J. Tribone, J.M. O’Reilly, J. Greener, Macromolecules 19, 1732 (1986).

    Article  ADS  Google Scholar 

  10. F. Romero Colomer, J.L. G’omez Ribelles, Polymer 30, 849 (1989).

    Article  Google Scholar 

  11. J.L. G’omez Ribelles, A. Ribes Greus, R. D’iaz Calleja, Polymer 31, 223 (1990).

    Article  Google Scholar 

  12. C.T. Moynihan, S.N. Crichton, S.M. Opalka, J. Non-Cryst. Solids 131–133, 420 (1991).

    Google Scholar 

  13. A.A.C.M. Oudhuis, G. ten Brinke, Macromolecules 25, 698 (1992).

    Article  ADS  Google Scholar 

  14. J.M.G. Cowie, R. Ferguson, Polymer 34, 2135 (1993).

    Article  Google Scholar 

  15. J.L. G’omez Ribelles, M. Monle’on Pradas, A. Vidaurre Garayo, F. Romero Colomer, J. M’as Estell’es, J.M. Meseguer Dueñas, Polymer 38, 963 (1997).

    Article  Google Scholar 

  16. J.L. G’omez Ribelles, A. Vidaurre Garayo, J.M.G. Cowie, R. Ferguson, S. Harris, I.J. McEwen, Polymer 40, 183 (1999).

    Article  Google Scholar 

  17. J.L. G’omez Ribelles, M. Monle’on Pradas, J.M. Meseguer Dueñas, V.P. Privalko, J. Non-Cryst. Solids 244, 172 (1999).

    Article  Google Scholar 

  18. J.L. G’omez Ribelles, M. Monle’on Pradas, Macromolecules 28, 5687 (1995).

    Google Scholar 

  19. J.M. Meseguer Dueñas, A. Vidaurre Garayo, F.J. Romero Colomer, J. M’as Estelles, J.L. G’omez Ribelles, M. Monle’on Pradas, J. Polym. Sci. Polym. Phys. 35, 2201 (1997).

    Article  Google Scholar 

  20. L. Andreozzi, M. Faetti, F. Zulli, M. Giordano, Eur. Phys. J. B 41, 383 (2004).

    Article  ADS  Google Scholar 

  21. F. Hern’andez S’anchez, J.M. Meseguer Dueñas, J.L. G’omez Ribelles, J. Therm. Anal. Cal. 72, 631 (2003).

    Article  Google Scholar 

  22. M. Salmer’on S’anchez, Y. Touz’e, A. Saiter, J.M. Saiter, J.L. G’omez Ribelles, Colloid. Polym. Sci. 283, 711 (2005).

    Article  Google Scholar 

  23. L. Andreozzi, M. Faetti, M. Giordano, F. Zulli, Macromolecules 38, 6056 (2005).

    Article  ADS  Google Scholar 

  24. L. Andreozzi, M. Faetti, M. Giordano, D. Palazzuoli, F. Zulli, Macromolecules 36, 7379 (2003).

    Article  ADS  Google Scholar 

  25. I.M. Hodge, J. Chem. Phys. 123, 124503 (2005).

    Article  ADS  Google Scholar 

  26. A.J. Kovacs, Fortschr. Hochpolym. Forsch. 3, 394 (1963).

    Article  Google Scholar 

  27. K. Adachi, T. Kotaka, Polym. J. 14, 959 (1982).

    Article  Google Scholar 

  28. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  ADS  Google Scholar 

  29. A. Arbe, J. Colmenero, M. Monkenbusch, D. Richter, Phys. Rev. Lett. 81, 590 (1998).

    Article  ADS  Google Scholar 

  30. R. Kohlrausch, Pogg. Ann. Phys. (Leipzig) 91, 179 (1854).

    Article  ADS  Google Scholar 

  31. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970).

    Article  Google Scholar 

  32. C.P. Lindsey, G.D. Patterson, J. Chem. Phys. 73, 3348 (1980).

    Article  ADS  Google Scholar 

  33. M. Dishon, J.T. Bendler, G.H. Weiss, J. Res. Nat. Inst. Stand. Technol. 95, 433 (1990).

    MATH  Google Scholar 

  34. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (John Wiley & Sons, New York, 1980).

    Google Scholar 

  35. R. Nozaki, S.J. Mashimo, J. Chem. Phys. 84, 3575 (1986).

    Article  ADS  Google Scholar 

  36. A. Alegr’ia, J. Colmenero, P.O. Mari, I.A. Campbell, Phys. Rev. E 59, 6888 (1999).

    Article  ADS  Google Scholar 

  37. J.M. Meseguer Dueñas, J. Molina Mateo, J.L. G’omez Ribelles, Polym. Eng. Sci. 45, 1336 (2005).

    Article  Google Scholar 

  38. A. Espadero Berzosa, J.L. G’omez Ribelles, S. Kripotou, P. Pissis, Macromolecules 37, 6472 (2004).

    Article  ADS  Google Scholar 

  39. J.M. Meseguer Dueñas, J.L. G’omez Ribelles, J. Non-Cryst. Solids 351, 482 (2005).

    Article  ADS  Google Scholar 

  40. K.L. Ngai, S. Mashimo, G. Fytas, Macromolecules 21, 3030 (1988).

    Article  ADS  Google Scholar 

  41. F. Kremer, A. Schonhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003).

    Google Scholar 

  42. J.H. Gibbs, E.A. DiMarzio, J. Chem. Phys. 28, 373 (1958).

    Article  ADS  Google Scholar 

  43. E. Donth, Relaxation and Thermodynamics in Polymers, Glass Transition (Akademie Verlag, Berlin, 1992).

    Google Scholar 

  44. C.A. Angell, J. Non-Cryst. Solids 131–133, 13 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gómez Ribelles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreozzi, L., Faetti, M., Salmerón Sanchez, M. et al. Phenomenological theory of structural relaxation based on a thermorheologically complex relaxation time distribution. Eur. Phys. J. E 27, 87–97 (2008). https://doi.org/10.1140/epje/i2008-10355-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10355-x

PACS

Navigation