Skip to main content
Log in

Key role of receptor density in colloid/cell specific interaction: a quantitative biomimetic study on giant vesicles

  • ISMC-2007
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This paper presents an experimental study of the adsorption of colloids on model membranes mediated by specific ligand-receptor interactions. The colloids consist of lipid multilamellar liposomes (spherulites) functionalized with the B-subunit of Shiga Toxin (STxB), while the membranes are lipid Giant Unilamellar Vesicles (GUV) containing STxB lipid receptor, Globotriaosylceramide (Gb3). Through confocal microscopy and flow cytometry, we show the specificity of the adsorption. Moreover, we show that flow cytometry can be used to efficiently quantify the kinetics of colloid adsorption on GUVs with very good statistics. By varying the bulk colloid concentration and receptor density in the membrane, we point out the existence of an optimum Gb3 density for adsorption. We propose that this optimum corresponds to a transition between reversible colloid adsorption at low Gb3 density and irreversible adsorption, and likely spherulite fusion, at high density. We compare our results both to STxB-colloids adhering on living cells and to free STxB proteins interacting with GUVs containing Gb3. This biomimetic system could be used for a quantitative evaluation of the early stage of virus infection or drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Allen, P. Cullis, Science 303, 1818 (2004).

    Article  ADS  Google Scholar 

  2. D. Knipe, P. Howley, Fields Virology and 5th edn (Lippincott Williams and Wilkins, 2007).

  3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of The Cell (Garland Science and New York, 2002).

  4. P. Bongrand, Rep. Prog. Phys. 62, 921 (1999).

    Article  ADS  Google Scholar 

  5. H. Nakajima, N. Kiyokawa, Y. Katagiri, T. Taguchi, T. Suzuki, T. Sekino, K. Mimori, T. Ebata, M. Saito, H. Nakao, J. Biol. Chem. 276, 42915 (2001).

    Article  Google Scholar 

  6. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Nature 397, 50 (1999).

    Article  ADS  Google Scholar 

  7. E. Evans, D. Calderwood, Science 316, 1148 (2007).

    Article  ADS  Google Scholar 

  8. X. Zhang, E. Wojcikiewicz, V. Moy, Biophys. J. 83, 2270 (2002).

    ADS  Google Scholar 

  9. C. Lee, Y. Wang, L. Huang, S. Lin, Micron 38, 446 (2007).

    Article  Google Scholar 

  10. R. Dulbecco, M. Vogt, Cold Spring Harb. Symp. Quant. Biol. 18, 273 (1953).

    Google Scholar 

  11. H. Aranda-Espinoza, Y. Chen, N. Dan, T. Lubensky, P. Nelson, L. Ramos, D. Weitz, Science 285, 394 (1999).

    Article  Google Scholar 

  12. L. Ramos, T. Lubensky, N. Dan, P. Nelson, D. Weitz, Science 286, 2325 (1999).

    Article  Google Scholar 

  13. I. Koltover, J. Rädler, C. Safinya, Phys. Rev. Lett. 82, 1991 (1999).

    Article  ADS  Google Scholar 

  14. M. Deserno, T. Bickel, Europhys. Lett. 62, 767 (2003).

    Article  ADS  Google Scholar 

  15. M. Deserno, Phys. Rev. E 69, 031903 (2004).

    Article  ADS  Google Scholar 

  16. G. Bell, M. Dembo, P. Bongrand, Biophys. J. 45, 1051 (1984).

    ADS  Google Scholar 

  17. R. Bruinsma, A. Behrisch, E. Sackmann, Phys. Rev. E 61, 4253 (2000).

    Article  ADS  Google Scholar 

  18. F. Brochard-Wyart, P. de Gennes, Proc. Natl. Acad. Sci. U.S.A. 99, 7854 (2002).

    Article  ADS  Google Scholar 

  19. J. Vitte, A. Benoliel, A. Pierres, P. Bongrand, Eur. Cell. Mater. 7, 52 (2004).

    Google Scholar 

  20. D. Cuvelier, M. Théry, Y.S. Chu, J. Thiery, M. Bornens, P. Nassoy, L. Mahadevan, Curr. Biol. 17, 694 (2007).

    Article  Google Scholar 

  21. A. Boulbitch, Z. Guttenberg, E. Sackmann, Biophys. J. 81, 2743 (2001).

    ADS  Google Scholar 

  22. S. Tzlil, M. Deserno, W. Gelbart, A. Ben-Shaul, Biophys. J. 86, 2037 (2004).

    Article  ADS  Google Scholar 

  23. D. van Effenterre, D. Roux, Europhys. Lett. 64, 543 (2003).

    Article  ADS  Google Scholar 

  24. H. Gao, W. Shi, L. Freund, Proc. Natl. Acad. Sci. U.S.A. 102, 9469 (2005).

    Article  ADS  Google Scholar 

  25. C. Poirier, D. van Effenterre, B. Delord, L. Johannes, D. Roux, submitted (2008).

  26. N. Mignet, A. Brun, C. Degert, B. Delord, D. Roux, C. Helene, R. Laversanne, J.C. François, Nucleic Acids Res. 28, 3134 (2000).

    Article  Google Scholar 

  27. S. Gaubert, E. Bayer, B. Delord, D. Roux, J. Amedee, C. Auriault, R. Laversanne, Drug Delivery 12, 69 (2005).

    Article  Google Scholar 

  28. J. Gariepy, Critical Rev. Onc. Hemat. 39, 99 (2001).

    Article  Google Scholar 

  29. L. Johannes, D. Decaudin, Gene Ther. 12, 1360 (2005).

    Article  Google Scholar 

  30. K. Janssen, D. Vignjevic, R. Boisgard, T. Falguieres, G. Bousquet, D. Decaudin, F. Dolle, D. Louvard, B. Tavitian, S. Robine, Cancer Res. 66, 7230 (2006).

    Article  Google Scholar 

  31. T. Falguieres, F. Mallard, C. Baron, D. Hanau, C. Lingwood, B. Goud, J. Salamero, L. Johannes, Mol. Biol. Cell 12, 2453 (2001).

    Google Scholar 

  32. W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. Aly, V. Fraisier, J.C. Florent, D. Perrais, Nature 450, 670 (2007).

    Article  ADS  Google Scholar 

  33. D. Pina, L. Johannes, M. Castanho, Biochim. Biophys. Acta 1768, 628 (2007).

    Article  Google Scholar 

  34. F. Mallard, L. Johannes, in E coli: shiga toxin methods and protocols (Methods in Molecular Medicine), edited by D. Philpott, F. Ebel, Vol. 73 (Humana Press, 2003), pp. 209--220.

  35. L. Mathivet, S. Cribier, P. Devaux, Biophys. J. 70, 1112 (1996).

    ADS  Google Scholar 

  36. P. Chenevier, B. Delord, J. Amedee, R. Bareille, F. Ichas, D. Roux, Biochim. Biophys. Acta 1593, 17 (2002).

    Article  Google Scholar 

  37. L. Mathivet, S. Cribier, P. Devaux, Biophys. J. 70, 1112 (1996).

    ADS  Google Scholar 

  38. H. Ling, A. Boodhoo, B. Hazes, M. Cummings, G. Armstrong, J. Brunton, R. Read, Biochemistry 37, 1777 (1998).

    Article  Google Scholar 

  39. X. Hagnerelle, C. Plisson, O. Lambert, S. Marco, J.L. Rigaud, L. Johannes, D. Levy, J. Struct. Biol. 139, 113 (2002).

    Article  Google Scholar 

  40. G. Hed, S. Safran, Phys. Rev. Lett. 93, 138101 (2004).

    Article  ADS  Google Scholar 

  41. G. Lei, R. MacDonald, Biophys. J. 85, 1585 (2003).

    Article  ADS  Google Scholar 

  42. B. Reynwar, G. Illya, V. Harmandaris, M. Muller, K. Kremer, M. Deserno, Nature 447, 461 (2007).

    Article  ADS  Google Scholar 

  43. T. Erdmann, U. Schwarz, Eur. Phys. J. E 22, 123 (2007).

    Article  MathSciNet  Google Scholar 

  44. R. Holz, C. Stratford, J. Membrane Biol. 46, 331 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamblet, M., Delord, B., Johannes, L. et al. Key role of receptor density in colloid/cell specific interaction: a quantitative biomimetic study on giant vesicles. Eur. Phys. J. E 26, 205–216 (2008). https://doi.org/10.1140/epje/i2007-10317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10317-x

PACS.

Navigation