Skip to main content
Log in

Intrusion of fluids into nanogrooves

How geometry determines the shape of the gas-liquid interface

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the shape of gas-liquid interfaces forming inside rectangular nanogrooves (i.e., slit-pores capped on one end). On account of purely repulsive fluid-substrate interactions the confining walls are dry (i.e., wet by vapor) and a liquid-vapor interface intrudes into the nanogrooves to a distance determined by the pressure (i.e., chemical potential). By means of Monte Carlo simulations in the grand-canonical ensemble (GCEMC) we obtain the density ρ(z) along the midline (x = 0 of the nanogroove for various geometries (i.e., depths D and widths L of the nanogroove. We analyze the density profiles with the aid of an analytic expression which we obtain through a transfer-matrix treatment of a one-dimensional effective interface Hamiltonian. Besides geometrical parameters such as D and L , the resulting analytic expression depends on temperature T , densities of coexisting gas and liquid phases in the bulk ρg,l x and the interfacial tension γ . The latter three quantities are determined in independent molecular dynamics simulations of planar gas-liquid interfaces. Our results indicate that the analytic formula provides an excellent representation of ρ(z) as long as L is sufficiently small. At larger L the meniscus of the intruding liquid flattens. Under these conditions the transfer-matrix analysis is no longer adequate and the agreement between GCEMC data and the analytic treatment is less satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schoen, S.H.L. Klapp, Reviews in Computational Chemistry, Vol. 24 (John Wiley & Sons, Hoboken, 2007).

  2. G.V. Burgess, D.H. Everett, S. Nutall, Pure Appl. Chem. 61, 1845 (1989).

    Article  Google Scholar 

  3. A.P.Y. Wong, M.H.W. Chan, Phys. Rev. Lett. 65, 2567 (1990).

    Article  ADS  Google Scholar 

  4. A. de Keizer, T. Michalski, G.H. Findenegg, Pure Appl. Chem. 63, 1495 (1991).

    Article  Google Scholar 

  5. A.P.Y. Wong, S.B. Kim, W.I. Goldburg, M.H.W. Chan, Phys. Rev. Lett. 70, 954 (1993).

    Article  ADS  Google Scholar 

  6. W.D. Machin, Langmuir 10, 1235 (1994).

    Article  Google Scholar 

  7. M. Thommes, G.H. Findenegg, Langmuir 10, 4270 (1994).

    Article  Google Scholar 

  8. H. Nakanishi, M.E. Fisher, J. Chem. Phys. 78, 3279 (1983).

    Article  ADS  Google Scholar 

  9. R. Evans, U. Marini Bettolo Marconi, P. Tarazona, J. Chem. Soc. Faraday Trans. 2 82, 1763 (1986).

    Article  Google Scholar 

  10. P. Tarazona, U. Marini Bettolo Marconi, R. Evans, Mol. Phys. 60, 573 (1987).

    Article  ADS  Google Scholar 

  11. Y.K. Tovbin, E.V. Votyakov, Langmuir 9, 2652 (1993).

    Article  Google Scholar 

  12. M. Schoen, D.J. Diestler, J. Chem. Phys. 109, 5596 (1998).

    Article  ADS  Google Scholar 

  13. L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).

    Article  ADS  Google Scholar 

  14. A. Gonzáles, J.A. White, F.L. Román, S. Velasco, Phys. Rev. Lett. 79, 2466 (1997).

    Article  ADS  Google Scholar 

  15. A. Gonzáles, J.A. White, F.L. Román, R. Evans, J. Chem. Phys. 109, 3637(1998).

    Article  ADS  Google Scholar 

  16. J.A. White, S. Velasco, Phys. Rev. E 62, 4427 (2000).

    Article  ADS  Google Scholar 

  17. J.A. White, A. Gonzáles, F.L. Román, S. Velasco, Phys. Rev. Lett. 84, 1220 (2000).

    Article  ADS  Google Scholar 

  18. G.O. Berim, E. Ruckenstein, J. Chem. Phys. 126, 124503 (2007).

    Article  ADS  Google Scholar 

  19. A.O. Parry, M.J. Greenall, A.J. Wood, J. Phys. Condens. Matter 14, 1169 (2002).

    Article  ADS  Google Scholar 

  20. D.B. Abraham, A.O. Parry, A.J. Wood, Europhys. Lett. 60, 106 (2002).

    Article  ADS  Google Scholar 

  21. A.O. Parry, M.J. Greenall, J.M. Romero-Enrique, Phys. Rev. Lett. 90, 046101 (2003).

    Article  ADS  Google Scholar 

  22. C. Rascón, A.O. Parry, Phys. Rev. Lett. 94, 096103 (2005).

    Article  ADS  Google Scholar 

  23. D.J. Scalapino, M. Sears, R.A. Ferrell, Phys. Rev. B 6, 3409 (1972).

    Article  ADS  Google Scholar 

  24. R. Lipowsky, Phys. Rev. B 32, 1731 (1985).

    Article  ADS  Google Scholar 

  25. P.C. Hemmer, B. Lund, J. Phys. A 21, 3463 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  26. S.T. Chui, J.D. Weeks, Phys. Rev. B 23, 2438 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  27. A.O. Parry, J. Phys. A 25, 257 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  28. A.O. Parry, C. Rascón, N.B. Wilding, R. Evans, Phys. Rev. Lett. 98, 226101 (2007).

    Article  ADS  Google Scholar 

  29. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, London, 2002).

  30. D.J. Diestler, M. Schoen, Phys. Rev. E 62, 6615 (2000).

    Article  ADS  Google Scholar 

  31. H. Bohlen, M. Schoen, J. Chem. Phys. 120, 6691 (2004).

    Article  ADS  Google Scholar 

  32. H. Bohlen, M. Schoen, J. Chem. Phys. 123, 124714 (2005).

    Article  ADS  Google Scholar 

  33. H. Bohlen, M. Schoen, Fluid Phase Equilib. 256, 137 (2007).

    Article  Google Scholar 

  34. N.B. Wilding, M. Schoen, Phys. Rev. E 60, 1081 (1999).

    Article  ADS  Google Scholar 

  35. G.A. Darbellay, J.M. Yeomans, J. Phys. A 25, 4275 (1992).

    Article  ADS  Google Scholar 

  36. D.M. Kroll, R. Lipowsky, Phys. Rev. B 28, 5273 (1983).

    Article  ADS  Google Scholar 

  37. E. Díaz-Herrera, J. Moreno-Razo, G. Ramirez-Santiago, Phys. Rev. E 70, 051601 (2004).

    Article  ADS  Google Scholar 

  38. E. Díaz-Herrera, J. Moreno-Razo, G. Ramirez-Santiago, J. Chem. Phys. 123, 184507 (2005).

    Article  ADS  Google Scholar 

  39. F. del Rio, E. Díaz-Herrera, E. Ávaloz, J. Alejandre, J. Chem. Phys. 122, 034504 (2004).

    Google Scholar 

  40. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).

  41. J.H. Irving, J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  42. C.D. Holcomb, P. Clancy, J.A. Zollweg, Mol. Phys. 78, 437 (1993).

    Article  ADS  Google Scholar 

  43. Data for the gas-liquid interfacial tension of the LJ fluid were taken from a data base of the National Institute of Standards and Technology at: URL: http://www.cstl. nist.gov/srs/LJ\_PURE/surface\_tension.htm.

  44. R. López-Rendón, Y. Reyes, P. Orea, J. Chem. Phys. 125, 084508 (2006).

    Article  ADS  Google Scholar 

  45. G.J. Gloor, G. Jackson, F.J. Blas, E. de Miguel, J. Chem. Phys. 123, 134703 (2005).

    Article  ADS  Google Scholar 

  46. P. Orea, Y. Duda, V.C. Weiss, W. Schröer, J. Alejandre, J. Chem. Phys. 120, 11754 (2004).

    Article  ADS  Google Scholar 

  47. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantenmechanik (Walter de Gruyter, Berlin, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohlen, H., Parry, A.O., Dıaz-Herrera, E. et al. Intrusion of fluids into nanogrooves. Eur. Phys. J. E 25, 103–115 (2008). https://doi.org/10.1140/epje/i2007-10268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10268-2

PACS.

Navigation