Skip to main content
Log in

Modeling DNA beacons at the mesoscopic scale

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We report model calculations on DNA single strands which describe the equilibrium dynamics and kinetics of hairpin formation and melting. Modeling is at the level of single bases. Strand rigidity is described in terms of simple polymer models; alternative calculations performed using the freely rotating chain and the discrete Kratky-Porod models are reported. Stem formation is modeled according to the Peyrard-Bishop-Dauxois Hamiltonian. The kinetics of opening and closing is described in terms of a diffusion-controlled motion in an effective free-energy landscape. Melting profiles, dependence of melting temperature on loop length, and kinetic time scales are in semiquantitative agreement with experimental data obtained from fluorescent DNA beacons forming poly(T) loops. Variation in strand rigidity is not sufficient to account for the large activation enthalpy of closing and the strong loop length dependence observed in hairpins forming poly(A) loops. Implications for modeling single strands of DNA or RNA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Bonnet, A. Libchaber, Physica A 263, 68 (1999).

    Article  ADS  Google Scholar 

  2. Xiang-Hong Peng, Ze-Hong Cao, Jin-Tang Xia, G.W. Carlson, M.M. Lewis, W.C. Wood, L. Yang, Cancer Res. 65, 1909 (2005).

    Article  Google Scholar 

  3. P.J. Santangello, B. Nix, A. Tsourkas, G. Bao, Nucl. Acid Res. 32, e57 (2004).

  4. M. Takinoue, A. Suyama, Chem-Bio Inf. J. 4, 93 (2004).

    Google Scholar 

  5. K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, M. Hagiya, Science 288, 1223 (2000).

    Article  ADS  Google Scholar 

  6. G. Bonnet, O. Krichevsky, A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 95, 8602 (1998).

    Article  ADS  Google Scholar 

  7. S.V. Kuznetsov, Y. Shen, A.S. Benight, A. Ansari, Biophys. J. 81, 2864 (2001).

    Article  ADS  Google Scholar 

  8. O. Kratky, G. Porod, Recl. Trav. Chim Pays-Bas 68, 1106 (1949).

    Google Scholar 

  9. J. Wilhelm, E. Frey, Phys. Rev. Lett. 77, 2581 (1996).

    Article  ADS  Google Scholar 

  10. M. Peyrard, A.R. Bishop Phys. Rev. Lett. 62, 2755 (1989).

    Article  ADS  Google Scholar 

  11. T. Dauxois, M. Peyrard, A.R. Bishop Phys. Rev. E 47, 684 (1993).

    Article  ADS  Google Scholar 

  12. Note that the stacking interaction that we use here is different from the expression used in the PBD model $12 K [1 + [- (y_m + y_m-1)]] \

  13. B. Hamprecht, H. Kleinert, Phys. Rev. E 71, 031803 (2005).

    Article  ADS  Google Scholar 

  14. J. Samuel, S. Sinha, Phys. Rev. E 66, 050801 (2002).

    Article  ADS  Google Scholar 

  15. S. Stephanow, G.M. Schütz, Europhys. Lett. 60, 546 (2002).

    Article  ADS  Google Scholar 

  16. M.E. Fisher, Am. J. Phys. 32, 343 (1964).

    Article  ADS  Google Scholar 

  17. This result has been derived in a slightly different form ---which includes the case of an external force--- by J. Yan, R. Kawamura, J. Marko, Phys. Rev. E 71, 061905 (2005).

    Article  ADS  Google Scholar 

  18. K. Schulten, Z. Schulten, A. Szabo, J. Chem. Phys. 74, 4426 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Szabo, K. Schulten, Z. Schulten, J. Chem. Phys. 72, 4350 (1980).

    Article  ADS  Google Scholar 

  20. J.M. Deutsch, J. Chem. Phys. 73, 4700 (1980).

    Article  ADS  Google Scholar 

  21. E. Stellwagen, N.C. Stellwagen, Electrophoresis 23, 2794 (2002).

    Article  Google Scholar 

  22. N.L. Goddard, G. Bonnet, O. Krichevsky, A. Libchaber, Phys. Rev. Lett. 85, 2400 (2000).

    Article  ADS  Google Scholar 

  23. S.B. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996).

    Article  ADS  Google Scholar 

  24. C. Rivetti, C. Walker, C. Bustamante, J. Mol. Biol. 280, 41 (1998).

    Article  Google Scholar 

  25. S. Cuesta López, Y.H. Sanejouand, private communication.

  26. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1979).

  27. A. Ansari, Y. Shen, S.V. Kuznetsov, Phys. Rev. Lett. 88, 069801 (2002).

    Article  ADS  Google Scholar 

  28. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, 1969).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Peyrard .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errami, J., Peyrard , M. & Theodorakopoulos, N. Modeling DNA beacons at the mesoscopic scale. Eur. Phys. J. E 23, 397–411 (2007). https://doi.org/10.1140/epje/i2007-10200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10200-x

PACS.

Navigation