Skip to main content
Log in

Field-temperature phase diagrams in chiral tilted smectics, evidencing ferroelectric and ferrielectric phases

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Usual ferroelectric compounds undergo a paraelectric-to-ferroelectric phase transition when the susceptibility of the electric polarization density changes its sign. The temperature is the only thermodynamic field that governs the phase transition. Chiral tilted smectics may also present an improper ferroelectricity when there is a tilt angle between the average long axis direction and the layer normal. The tilt angle is the order parameter of the phase transition which is governed by the temperature. Although the electric susceptibility remains positive, a polarization proportional to the tilt appears due to their linear coupling allowed by the chiral symmetry. Further complications come in when the chirality increases, as new phases are encountered with the same tilt inside the layers but a distribution of the azimuthal direction which is periodic with a unit cell of two ( SmCA * , three ( SmCFi1 * , four ( SmCFi2 * or more ( SmCα * layers. In most of these phases, the layer normal is a symmetry axis so there is no macroscopic polarization except for the SmCFi1 * in which the average long axis is tilted so the phase is ferrielectric. By studying a particular compound with only a SmCFi2 * and a SmCα * phase, we show that we recover the uniformly tilted ferroelectric SmC* when applying an electric field. We are thus led to build field-temperature phase diagrams for this class of compounds by combining different experimental techniques described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1993).

  2. Y. Galerne, L. Liebert, Phys. Rev. Lett. 64, 906 (1990).

    Article  ADS  Google Scholar 

  3. A. de Vries, Mol. Cryst. Liq. Cryst. Lett. 41, 27 (1977).

    Article  Google Scholar 

  4. R.B. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Phys. (Paris) Lett. 36, L69 (1975).

  5. S. Chandrasekhar, Liquid Crystals, 2nd ed. (University Press, Cambridge, 1992).

  6. C. Bahr, G. Heppke, Mol. Cryst. Liq. Cryst. Lett. 4, 31 (1986).

    Google Scholar 

  7. A.D.L. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, K. Terashima, K. Furukawa, A. Kishi, Jpn. J. Appl. Phys. 28, L1261 (1989).

    Google Scholar 

  8. P. Mach, R. Pindak, A.M. Levelut, P. Barois, H.T. Nguyen, C.C. Huang, L. Furenlid, Phys. Rev. Lett. 81, 1015 (1998).

    Article  ADS  Google Scholar 

  9. A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe, J. Mater Chem. 4, 997 (1994).

    Article  Google Scholar 

  10. N.M. Shtykov, A.D.L. Chandani, A.V. Emelyanenko, A. Fukuda, J.K. Vij, Phys. Rev. E. 71, 021711 (2005).

    Article  ADS  Google Scholar 

  11. A. Cady, J.A. Pitney, R. Pindak, L.S. Matkin, S.J. Watson, H.F. Gleeson, P. Cluzeau, P. Barois, A.M. Levelut, W. Caliebe, Phys. Rev. E 64, 050702(R) (2001).

    Article  ADS  Google Scholar 

  12. N.W. Roberts, S. Jaradat, L.S. Hirst, M.S. Thurlow, Y. Wang, S.T. Wang, Z.Q. Liu, C.C. Huang, J. Bai, R. Pindak, H.F. Gleeson, Europhys. Lett. 72, 976 (2005).

    Article  ADS  Google Scholar 

  13. D.A. Olson, X.F. Han, A. Cady, C.C. Huang, Phys. Rev. E 66, 021702 (2002).

    Article  ADS  Google Scholar 

  14. T. Matsumoto, A. Fukuda, M. Johno, Y. Motoyama, T. Isozaki, T. Yui, S.S. Seomun, M. Yamashita, J. Mater Chem. 9, 2051 (1999).

    Article  Google Scholar 

  15. T. Carlsson, B. Zeks, A. Levstik, C. Filipic, R. Blinc, Phys. Rev. A 36, 1484 (1987).

    Article  ADS  Google Scholar 

  16. H. Orihara, Y. Ishibashi, Jpn. J. Appl. Phys. 29, L115 (1990).

  17. H. Sun, H. Orihara, Y. Ishibashi, J. Phys. Soc. Jpn. 60, 1991 (1991).

    Article  Google Scholar 

  18. A. Roy, N.V. Madhusudana, Europhys. Lett. 36, 221 (1996).

    Article  ADS  Google Scholar 

  19. A. Roy, N.V. Madhusudana, Eur. Phys. J. E. 1, 319 (2000).

    Google Scholar 

  20. N. Vaupotic, M. Cepic, Phys. Rev. E 71, 041701 (2005).

    Article  ADS  Google Scholar 

  21. V.L. Lorman, Liq. Cryst. 20, 267 (1996).

    Article  Google Scholar 

  22. A.V. Emelyanenko, A. Fukuda, J.K. Vij, Phys. Rev. E 74, 011705 (2006).

    Article  ADS  Google Scholar 

  23. F. Beaubois, J.P. Marcerou, H.T. Nguyen, J.C. Rouillon, Eur. Phys. J. E 3, 273 (2000).

    Article  Google Scholar 

  24. C. Bahr, G. Heppke, Mol. Cryst. Liq. Cryst. 150, 313 (1987).

    Article  Google Scholar 

  25. L. Dupont, J. Galvan, J.P. Marcerou, J. Prost, Ferroelectrics 84, 315 (1988).

    Google Scholar 

  26. J.P. Bedel, J.C. Rouillon, J.P. Marcerou, H.T. Nguyen, M.F. Achard, Phys. Rev. E 69, 061702 (2004).

    Article  ADS  Google Scholar 

  27. J. Hatano, M. Harazaki, M. Sato, K. Iwauchi, S. Saito, Jpn. J. Appl. Phys. 32, 4344 (1993).

    Article  ADS  Google Scholar 

  28. M. Manai, A. Gharbi, S. Essid, M.F. Achard, J.P. Marcerou, H.T. Nguyen, J.C. Rouillon, Ferroelectrics 343, 27 (2006).

    Article  Google Scholar 

  29. M. Glogarovà, J. Pavel, Liq. Cryst. 6, 325 (1989).

    Article  Google Scholar 

  30. F. Ghoddoussi, M.A. Pantea, P.H. Keyes, R. Naik, P.P. Vaishnava, Phys. Rev. E 68, 051706 (2003).

    Article  ADS  Google Scholar 

  31. H. Orihara, Y. Naruse, M. Yagyu, A. Fajar, S. Uto, Phys. Rev. E 72, 040701(R) (2005).

    Article  ADS  Google Scholar 

  32. S. Essid, M. Manai, A. Gharbi, J.P. Marcerou, J.C. Rouillon, H.T. Nguyen, Liq. Cryst. 31, 1185 (2004).

    Article  Google Scholar 

  33. M.F. Achard, J.P. Bedel, J.P. Marcerou, H.T. Nguyen, J.C. Rouillon, Eur. Phys. J. E 10, 129 (2003).

    Article  Google Scholar 

  34. H. Allouchi, M. Cotrait, M. Laguerre, J. Rouillon, J.P. Marcerou, H.T. Nguyen, Liq. Cryst. 25, 207 (1998).

    Article  Google Scholar 

  35. A.D.L. Chandani, N.M. Shtykov, V.P. Pavanov, A.V. Emelyanenko, A. Fukuda, J.K. Vij, Phys. Rev. E. 72, 041705 (2005).

    Article  ADS  Google Scholar 

  36. N.A. Clark, T. Bellini, R.F. Shao, D. Coleman, S. Bardon, D.R. Link, J.E. Maclennan, X.H. Chen, M.D. Wand, D.M. Walba, P. Rudquist, S.T. Lagerwall, Appl. Phys. Lett. 80, 4097 (2002).

    Article  ADS  Google Scholar 

  37. L. Landau, L. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon Press, Oxford, 1984).

  38. S. Garoff, R.B. Meyer, Phys. Rev. Lett. 38, 848 (1977).

    Article  ADS  Google Scholar 

  39. A. Défontaines, J. Prost, Phys. Rev. E 47, 1184 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcerou, J.P., Nguyen, H.T., Bitri, N. et al. Field-temperature phase diagrams in chiral tilted smectics, evidencing ferroelectric and ferrielectric phases. Eur. Phys. J. E 23, 319–328 (2007). https://doi.org/10.1140/epje/i2007-10195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10195-2

PACS.

Navigation