Skip to main content
Log in

Dramatic stiffening of ultrathin polymer films in the rubbery regime

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Recently, we (P.A. O'Connell, G.B. McKenna, Science 307, 1760 (2005)) introduced a novel nano-bubble inflation method to measure the absolute creep compliance of nanometer thick polymer films. In that work it was shown that even at film thicknesses as small as 27.5nm the glass temperature was unchanged for poly(vinyl acetate) (PVAc). Perhaps more importantly, and the subject of the present work, was the observation that these ultrathin films show a dramatic stiffening in the rubbery plateau regime, i.e., the compliance was reduced by over two orders of magnitude compared to the bulk material. In the present work we substantiate the previous results in a study of the thickness dependence of the rubbery compliance of PVAc and polystyrene (PS) films for thicknesses from 13nm to 276nm. We show the substantial stiffening of the plateau region for both materials. Furthermore, the rubbery compliance (inverse of stiffness) scales with approximately the second power ( 1.8±0.2) in the film thickness for both materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A. O'Connell, G.B. McKenna, Science 307, 1760 (2005).

    Article  ADS  Google Scholar 

  2. A.E. Green, Large Elastic Deformations (Oxford University Press, London, 1970).

  3. A.S. Wineman, Trans. Soc. Rheol. 20, 203 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  4. D.D. Joye, G.W. Poehlein, C.D. Denson, Trans. Soc. Rheol. 16, 421 (1972).

    Article  Google Scholar 

  5. O. Hassager, S.B. Kristensen, J.R. Larsen, Neergaard, J. Non-Newtonian Fluid Mech. 88, 185 (1999).

    Article  MATH  Google Scholar 

  6. M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).

  7. C.L. Jackson, G.B. McKenna, J. Non-Cryst. Solids 221, 131 (1991).

    Google Scholar 

  8. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996).

    Article  ADS  Google Scholar 

  9. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).

    Article  ADS  Google Scholar 

  10. K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E 63, 031801 (2001).

    Article  ADS  Google Scholar 

  11. J.S. Sharp, J.A. Forrest, Eur. Phys. J. E 12, s01, 97 (2003).

    Google Scholar 

  12. C.B. Roth, J.R. Dutcher, Eur. Phys. J. E 12, s01, 103 (2003).

    Google Scholar 

  13. J.P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, C.G. Jannink, R. Ober, V. Picot, J. des Cloizeaux, Macromolecules 7, 863 (1974).

    Article  Google Scholar 

  14. K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 64, 051807 (2001).

    Article  ADS  Google Scholar 

  15. Aquamarijn Micro Filtration B.V., Berkelkade 11, 7201 JE Zutphen, The Netherlands.

  16. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

  17. D.J. Plazek, Polym. J. 12, 43 (1980).

    Article  Google Scholar 

  18. E. Suhir, Structural Analysis in Microelectronic and Fiber Optic Systems, Vol. 1, Basic Principles of Engineering Elasticity and Fundamentals of Structural Analysis (Van Nostrand Reinhold, New York, 1991).

  19. U. Komaragiri, M.R. Begley, J. Appl. Mech., Trans. Am. Soc. Mech. Eng. 72, 203 (2005).

    Google Scholar 

  20. J.E. Mark, Physical Properties of Polymers Handbook (AIP Press, New York, 1996).

  21. C.J. Ellison, J.M. Torkelson, J. Polym. Sci. B 40, 2745 (2002).

    Article  Google Scholar 

  22. C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003).

    Article  Google Scholar 

  23. C.J. Ellison, S.D. Kim, D.B. Hall, J.M. Torkelson, Eur. Phys. J. E 8, 155 (2002).

    Article  Google Scholar 

  24. S.A. Hutcheson, G.B. McKenna, Phys. Rev. Lett. 94, 076103 (2005)

    Article  ADS  Google Scholar 

  25. S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R.M. Overney, Phys. Rev. Lett. 85, 2340 (2000).

    Article  ADS  Google Scholar 

  26. K.L. Ngai, Eur. Phys. J. E 8, 225 (2002).

    Article  Google Scholar 

  27. Z. Fakhraai, S. Valadkhan, J.A. Forrest, Eur. Phys. J. E 18, 143 (2005).

    Article  Google Scholar 

  28. G.B. DeMaggio, W.E. Frieze, D.W. Gidley, M. Zhu, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997).

    Article  ADS  Google Scholar 

  29. W.E. Wallace, J.H. Van Zanten, W.L. Wu, Phys. Rev. E 52, R3329 (1995).

  30. J. Mattsson, J.A. Forrest, L. Borjesson, Phys. Rev. E 62, 5187 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. McKenna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connell, P.A., McKenna, G.B. Dramatic stiffening of ultrathin polymer films in the rubbery regime. Eur. Phys. J. E 20, 143–150 (2006). https://doi.org/10.1140/epje/i2005-10125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10125-4

PACS.

Navigation