Skip to main content
Log in

Dynamic model and stationary shapes of fluid vesicles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A phase-field model that takes into account the bending energy of fluid vesicles is presented. The Canham-Helfrich model is derived in the sharp-interface limit. A dynamic equation for the phase-field has been solved numerically to find stationary shapes of vesicles with different topologies and the dynamic evolution towards them. The results are in agreement with those found by minimization of the Canham-Helfrich free energy. This fact shows that our phase-field model could be applied to more complex problems of instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Edidin, Nature Rev. Mol. Cell Biol. 4, 414 (2003).

    Article  Google Scholar 

  2. B. Alberts, Molecular Biology of the Cell, 4th ed. (Garland Science, 2002).

  3. J. Zimmerberg, M.M. Kozlov, Nature Rev. Mol. Cell Biol. 7, 9 (2006).

    Article  Google Scholar 

  4. U. Seifert, Adv. Phys. 46, 13 (1997).

    Article  ADS  Google Scholar 

  5. S.A. Safran, Adv. Phys. 48, 395 (1999).

    Article  ADS  Google Scholar 

  6. R. Lipowsky, E. Sackmann (Editors), Structure and Dynamics of Membranes, Handbook of Biological Physics (Elsevier Science, 1995).

  7. I. Tsafrir, Phys. Rev. Lett. 86, 1138 (2001).

    Article  ADS  Google Scholar 

  8. I. Tsafrir, Shape Instabilities of Membranes with Anchored Polymers under Geometric Constraints, PhD Thesis, Weizmann Institute of Science (2003).

  9. I. Tsafrir, Y. Caspi, M.A. Guedeau-Boudeville, T. Arzi, J. Stavans, Phys. Rev. Lett. 91, 138102 (2003).

    Article  ADS  Google Scholar 

  10. H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl. 27, 113 (1988).

    Article  Google Scholar 

  11. M. Kraus, W. Wintz, U. Seifert, R. Lipowsky, Phys. Rev. Lett. 77, 3685 (1996).

    Article  ADS  Google Scholar 

  12. T. Biben, C. Misbah, Phys. Rev. E 67, 031908 (2003).

    Article  ADS  Google Scholar 

  13. H. Noguchi, G. Gompper, Phys. Rev. Lett. 93, 258102 (2004).

    Article  ADS  Google Scholar 

  14. H. Noguchi, G. Gompper, Phys. Rev. E 72, 011901 (2005).

    Article  ADS  Google Scholar 

  15. T. Taniguchi, Phys. Rev. Lett. 76, 4444 (1996).

    Article  ADS  Google Scholar 

  16. P.B. Sunil Kumar, G. Gompper, R. Lipowsky, Phys. Rev. Lett. 86, 3911 (2001).

    Article  ADS  Google Scholar 

  17. M. Laradji, P.B. Sunil Kumar, Phys. Rev. Lett. 93, 198105 (2004).

    Article  ADS  Google Scholar 

  18. P. Sens, Phys. Rev. Lett. 93, 108103 (2004).

    Article  ADS  Google Scholar 

  19. R. Goldstein, P. Nelson, T. Powers, U. Seifert, J. Phys. II 6, 767 (1996).

    Article  Google Scholar 

  20. J. Prost, R. Bruinsma, Europhys. Lett. 33, 321 (1996).

    Article  ADS  Google Scholar 

  21. J.-M. Allain, M. Ben Amar, Physica A 337, 531 (2004).

    Article  ADS  Google Scholar 

  22. J. Langer, in Directions in Condensed Matter Physics, edited by G. Grinstein, G. Mazenko (World Scientific, 1986).

  23. R. González-Cinca, in Advances in Condensed Matter and Statistical Physics, edited by E. Korutcheva, R. Cuerno (Nova Science Publishers, 2004) pp. 203-236, http://arxiv.org/abs/cond-mat/0305058.

  24. M. Alava, M. Dubé, M. Rost, Adv. Phys. 53, 83 (2004).

    Article  ADS  Google Scholar 

  25. Q. Du, C. Liu, X. Wang, J. Comput. Phys. 198, 450 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Q. Du, C. Liu, X. Wang, J. Comput. Phys. 121, 757 (2006).

    Article  Google Scholar 

  27. G. Gompper, M. Schick, Phys. Rev. Lett. 65, 1116 (1990).

    Article  ADS  Google Scholar 

  28. G. Gompper, M. Schick, Self-assembling amphiphilic system, Phase Transitions and Critical Phenomena, No. 16 (Academic Press, London, 1994).

  29. P. Canham, J. Theor. Biol. 26, 61 (1970).

    Google Scholar 

  30. W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

    Google Scholar 

  31. J. Cahn, J. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  Google Scholar 

  32. M. do Carmo, Differential Geometry of Curves and Surfaces (Prentince-Hall, 1976).

  33. S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, Frontiers in Physics, No. 90 (Addison-Wesley, 1994).

  34. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations (Wadsworth & Brooks, 1989).

  35. D.P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, 1999).

  36. E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).

    Article  ADS  Google Scholar 

  37. U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  38. U. Seifert, Phys. Rev. Lett. 66, 2404 (1991).

    Article  ADS  Google Scholar 

  39. F. Jülicher, U. Seifert, R. Lipowsky, J. Phys. II 3, 1681 (1993).

    Article  Google Scholar 

  40. U. Seifert, S. Langer, Europhys. Lett. 23, 71 (1993).

    ADS  Google Scholar 

  41. A. Yeung, E. Evans, J. Phys. II 5, 1501 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Campelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campelo, F., Hernández-Machado, A. Dynamic model and stationary shapes of fluid vesicles. Eur. Phys. J. E 20, 37–45 (2006). https://doi.org/10.1140/epje/i2005-10079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10079-5

PACS.

Navigation