Skip to main content
Log in

Effects of the rate of evaporation and film thickness on nonuniform drying of film-forming concentrated colloidal suspensions

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we report on nonuniform distribution of film-forming waterborne colloidal suspensions above the critical concentration φc of the colloidal glass transition during drying. We found that colloidal suspension films dry nonuniformly when the initial rate of evaporation E and/or the initial thickness l0 are high. We found that a Peclet number Pe, defined as Pe = El0/D, where D is the diffusion coefficient of the colloids in the diluted suspensions, does not predict uniformity of drying of the concentrated suspensions, contrary to the reported work on drying of diluted suspensions. Since the colloidal particles are crowded and their diffusive motion is restricted in concentrated suspensions, we assumed that above φc water is transported to the drying surface by hydrodynamic flow along the osmotic pressure gradient. The permeability of water through channels between deforming particles is estimated by adapting the theory of foam drainage. We defined a new Peclet number Pe’ by substituting the transport coefficient of flow (defined as the permeability divided by the viscosity, multiplied by the osmotic pressure gradient) for the diffusion coefficient. This extended Peclet number predicted the nonuniform drying with a criterion of Pe’ > 1. These results indicate that the mechanism of water transport to the drying surface in concentrated suspensions is water permeation by osmotic pressure, which is faster than mutual diffusion between water and particles --that has been observed in diluted suspensions and discussed by Routh and Russel. The theory fits well the experimental drying curves for various thicknesses and rates of evaporation. The particle distribution in the drying films is also estimated and it is indicated that the latex distribution is nonuniform when Pe’ > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

F. Giorgiutti-Dauphiné & L. Pauchard

References

  1. J.L. Keddie, Mater. Sci. Eng. Rep. 21, 101 (1997).

    Google Scholar 

  2. J.L. Keddie, P. Meredith, R.A.L. Jones, A.M. Donald, Macromolecules 28, 2673 (1995).

    CAS  Google Scholar 

  3. R.D. Deegan, Olgica Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997).

    CAS  Google Scholar 

  4. J.M. Salamanca, E. Ciampi, D.A. Faux, P.M. Glover, P.J. McDonald, A.F. Routh, A.C.I.A. Peters, R. Satguru, J.L. Keddie, Langmuir 17, 3202 (2001).

    CAS  Google Scholar 

  5. F. Parisse, C. Allain, J. Phys. II 6, 1111 (1996).

    CAS  Google Scholar 

  6. A.F. Routh, W.B. Russel, Langmuir 15, 7762 (1999).

    CAS  Google Scholar 

  7. A.F. Routh, W.B. Zimmerman, Chem. Eng. Sci. 59, 2961 (2004).

    CAS  Google Scholar 

  8. L.A. Brown, C.F. Zukoski, L.R. White, AIChE J. 48, 492 (2002).

    CAS  Google Scholar 

  9. A.F. Routh, W.B. Russel, Ind. Eng. Chem. Res. 40, 4302 (2001).

    CAS  Google Scholar 

  10. J.-P. Gorce, D. Bovey, P.J. McDonald, P. Palasz, D. Taylor, J.L. Keddie, Eur. Phys. J. E 8, 421 (2002).

    CAS  PubMed  Google Scholar 

  11. P.N. Pusey, W. van Megen, Phys. Rev. Lett. 59, 2083 (1987).

    CAS  PubMed  Google Scholar 

  12. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 75, 2770 (1995).

    CAS  PubMed  Google Scholar 

  13. L.A. Brown, C.F. Zukoski, L.R. White, AIChE J. 49, 362 (2003).

    CAS  Google Scholar 

  14. T. Narita, C. Beauvais, P. Hébraud, F. Lequeux, Eur. Phys. J. E 14, 287 (2004).

    CAS  PubMed  Google Scholar 

  15. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Phys. Rev. Lett. 82, 4232 (1999).

    CAS  Google Scholar 

  16. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Langmuir 16, 6327 (2000).

    CAS  Google Scholar 

  17. V. Carrier, S. Destouesse, A. Colin, Phys. Rev. E 65, 061404 (2002).

    CAS  Google Scholar 

  18. D. Desai, R. Kumar, Chem. Eng. Sci. 49, 1361 (1982).

    Google Scholar 

  19. R.A. Leonard, R. Lemlich, AIChE J. 11, 18 (1965).

    CAS  Google Scholar 

  20. R. Phelan, D. Weaire, E.A.J.F. Peters, G. Verbist, J. Phys. Condens. Matter 8, L475 (1996).

  21. C. Bonnet-Gonnet, L. Belloni, B. Cabane, Langmuir 10, 4012 (1994).

    CAS  Google Scholar 

  22. S.G. Croll, J. Coat. Technol. 58, 41 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Narita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narita, T., Hébraud, P. & Lequeux, F. Effects of the rate of evaporation and film thickness on nonuniform drying of film-forming concentrated colloidal suspensions. Eur. Phys. J. E 17, 69–76 (2005). https://doi.org/10.1140/epje/i2004-10109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10109-x

PACS.

Navigation