Skip to main content
Log in

Statistical mechanics of columnar DNA assemblies

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Many physical systems can be mapped onto solved or “solvable” models of magnetism. In this work, we have mapped the statistical mechanics of columnar phases of ideally helical rigid DNA --subject to the earlier found unusual, frustrated pair potential (A.A. Kornyshev, S. Leikin, J. Chem. Phys. 107, 3656 (1997))-- onto an exotic, unknown variant of the XY model on a fixed or restructurable lattice. Here, the role of the “spin” is played by the azimuthal orientation of the molecules. We have solved this model using a Hartree-Fock approximation, ground-state calculations, and finite-temperature Monte Carlo simulations. We have found peculiar spin order transitions, which may also be accompanied by positional restructuring, from hexagonal to rhombohedric lattices. Some of these have been experimentally observed in dense columnar aggregates. Note that DNA columnar phases are of great interest in biophysical research, not only because they are a useful in vitro tool for the study of DNA condensation, but also since these structures have been detected in living matter. Within the approximations made, our study provides insight into the statistical mechanics of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Livolant, A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996).

    Google Scholar 

  2. R. Langridge, H.R. Wilson, C.W. Hooper, M.H.F. Wilkins, L.D. Hamilton, J. Mol. Biol. 2, 19 (1960).

    Google Scholar 

  3. C. Robinson, Tetrahedron 13, 219 (1961).

    Google Scholar 

  4. H.H. Strey , Phys. Rev. Lett. 84, 3105 (2000).

    ADS  Google Scholar 

  5. T.E. Strzelecka, M.W. Davidson, R.L. Rill, Nature 331, 457 (1988).

    ADS  Google Scholar 

  6. Z. Reich, E.J. Wachtel, A. Minsky, Science 264, 1460 (1994).

    ADS  Google Scholar 

  7. V.A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Google Scholar 

  8. W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, 38 (2000).

    Google Scholar 

  9. H.H. Strey, R. Podgornik, D.C. Rau, V.A. Parsegian, Curr. Opin. Struct. Biol. 8, 309 (1998).

    Google Scholar 

  10. R. Podgornik, H.H. Strey, V.A. Parsegian, Curr. Opin. Colloid Interface Sci. 3, 534 (1998).

    Article  Google Scholar 

  11. B.M. Weiner, N. Kleckner, Cell 77, 977 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. F. Oosawa, Biopolymers 6, 134 (1968).

    Google Scholar 

  13. A.A. Kornyshev, S. Leikin, J. Chem. Phys. 107, 3656 (1997)

    ADS  Google Scholar 

  14. A.A. Kornyshev, S. Leikin, Phys. Rev. Lett. 82, 4138 (1999).

    ADS  Google Scholar 

  15. A.A. Kornyshev, S. Leikin, Biophys. J. 75, 2513 (1998).

    Article  ADS  Google Scholar 

  16. H.M. Harreis, A.A. Kornyshev, C.N. Likos, H. Löwen, G. Sutmann, Phys. Rev. Lett. 89, 018303 (2002).

    ADS  Google Scholar 

  17. V. Lorman, R. Podgornik, B. Žekš, Phys. Rev. Lett. 87, 218101 (2001).

    ADS  Google Scholar 

  18. A.A. Kornyshev, S. Leikin, Phys. Rev. E 62, 2576 (2000).

    ADS  Google Scholar 

  19. A.A. Kornyshev, S. Leikin, Phys. Rev. Lett. 86, 3666 (2001) (DNA need not unzip, Phys. Rev. Focus (http://focus.aps.org/v7/st19.html)).

    ADS  Google Scholar 

  20. D.J. Lee, A. Wynveen, A.A. Kornyshev, Phys. Rev. E 70, 051913 (2004).

    ADS  Google Scholar 

  21. R.B. Potts, Proc. Cambridge Philos. Soc. 48, 106 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  22. A.G. Cherstvy, A.A. Kornyshev, S. Leikin, J. Phys. Chem. B 108, 6508 (2004).

    Google Scholar 

  23. S. Samuel, Phys. Rev. B 25, 1755 (1982).

    ADS  Google Scholar 

  24. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  25. There are 6 distinct topological ground states corresponding to the broken symmetries of the Potts state. 3 states are got through translations of the lattice, the other three are got by changing the staggered helicity (defined later in the text). However, what seems to matter in this transition is the change in staggered helicity.

  26. D.H. Lee, J.D. Joannopoulos, J.W. Negele, D.P. Landau, Phys. Rev. B 33, 450 (1986).

    ADS  Google Scholar 

  27. Unfortunately, including topological excitations in a systematic manner is an involved and difficult process. Indeed, in the pure XY model vortices have been included in analytical calculations (S. Ami, H. Kleinert, Phys. Rev. B 33, 4692 (1986)). These calculations are complicated, but do lead to good agreement from zero temperature right up to the BKT transition. However, we have decided that, since this is a first time study, a theoretical treatment including topological excitations is beyond the scope of the present work.

    Google Scholar 

  28. A.G. Cherstvy, A.A. Kornyshev, S. Leikin, J. Phys. Chem. B 106, 13362 (2002).

    Google Scholar 

  29. T.E. Strzelecka, R.L. Rill, J. Am. Chem. Soc. 109, 4513 (1987).

    Google Scholar 

  30. D. Durand, J. Doucet, F. Livolant, J. Phys. II 2, 1769 (1992).

    Google Scholar 

  31. E. Allahyarov, G. Gompper, H. Löwen, Phys. Rev. E 69, 041904 (2004).

    ADS  Google Scholar 

  32. A.H.A. Tajmir-Riahi , J. Biomol. Struct. Dyn. 11, 83, (1993)

    Google Scholar 

  33. A.A. Kornyshev, D.J. Lee, S. Leikin, A. Wynveen, S.B. Zimmerman, in preparation.

  34. K. Kassapidou, J.R.C. van der Maarel, Eur. Phys. J. B 3, 471 (1998).

    ADS  Google Scholar 

  35. For a review see, A.A. Kornyshev, in The Chemical Physics of Solvation, Part A: Theory of Solvation, edited by R.R. Dogonadze, E. Kalman, A.A. Kornyshev, J. Ulstrup (Elsevier, Amsterdam, 1985) Chapt. 3

  36. A.A. Kornyshev, A. Wynveen, Phys. Rev. E 69, 041905 (2004).

    ADS  Google Scholar 

  37. As an example using the hexagonal Brillouin zone, see C. Honerkamp, Phys. Rev. B 68, 104510 (2003).

    Google Scholar 

  38. For those interested in the steps in the calculation but less experienced in diagrammatic perturbation theory, we refer to Daniel J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wynveen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynveen, A., Lee, D.J. & Kornyshev, A.A. Statistical mechanics of columnar DNA assemblies. Eur. Phys. J. E 16, 303–318 (2005). https://doi.org/10.1140/epje/i2004-10087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10087-y

PACS.

Navigation