Skip to main content
Log in

Three-dimensional electrohydrodynamic temporal instability of a moving dielectric liquid sheet emanated into a gas medium

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A linear electrohydrodynamic instability analysis is presented for an inviscid dielectric liquid sheet emanated into an inviscid dielectric gas medium in the presence of a horizontal electric field. The influence of Weber number, gas-to-liquid density ratio, and the applied electric field on the evolution of two-, and three-dimensional disturbances of symmetrical and antisymmetrical types is studied. It is found, for antisymmetrical waves, that two-dimensional disturbances always prevail over three-dimensional disturbances, regardless of Weber number or gas-to-liquid density ratio values, especially for long waves; while for short waves, both two- and three-dimensional disturbances grow at approximately the same rate. It is also found, for symmetrical waves, that two-dimensional disturbances always dominate the instability process at low Weber number, and when the Weber number is large, symmetrical three-dimensional disturbances become more unstable than two-dimensional ones for long waves. The effect of increasing the gas-to-liquid density ratio is to promote the dominance of long three-dimensional symmetrical waves over their two-dimensional counterpart. Finally, the equilibrium Weber number at which the growth rates of two- and three-dimensional modes are equal is discussed for both symmetrical- and antisymmetrical-disturbances cases.-1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.P. Lin, Breakup of Liquid Sheets and Jets (Cambridge University Press, New York, 2003).

  2. P.G. Drazin, Introduction to Hydrodynamic Stability (Cambridge University Press, Cambridge, 2002).

  3. A.H. Lefebrve, Gas Turbine Combustion (McGraw-Hill, New Work, 1983).

  4. A.H. Lefebrve, Atomization and Sprays (Hemisphere, New York, 1989).

  5. J.L. York, H.E. Stubbs, M.R. Tek, Trans. ASME 75, 1279 (1937).

    Google Scholar 

  6. R.B. Squire, Brit. J. Appl. Phys. 4, 167 (1953).

    Article  ADS  Google Scholar 

  7. W.W. Hagerty, J.F. Shea, J. Appl. Mech. 22, 509 (1955).

    Google Scholar 

  8. T. Arai, H. Hashimoto, Bull. JSME 28, 1652 (1985).

    Google Scholar 

  9. T. Arai, H. Hashimoto, in Proceedings of the 3rd International Conference on Liquid Atomization and Spray Systems (Institute of Energy, London, 1985).

  10. H. Eroglu, N. Chigier, in Proceedings of the 5th International Conference on Liquid Atomization and Spray Systems (National Institute for Standards and Technology, Gaithersburg, MD, 1991).

  11. G. Vich, C. Dumouchel, M. Ledoux, in 12th Annual Conference of ILASS-Europe on Liquid Atomization and Spray Systems, NUTEX, Lund, Sweden, 19-21 June, 1996, edited by C.J. Bolinder, I. Fuchs (Begell House, Inc., 1996).

  12. B.E. Stapper, W.A. Sowa, G.S. Samuelson, J. Eng. Gas Turbines 114, 39 (1992).

    Google Scholar 

  13. F. Barreras, PhD Thesis, University of Zaragoza, Spain, 1998.

  14. N. Dombrowski, W.R. Johns, Chem. Eng. Sci. 18, 203 (1963).

    Article  Google Scholar 

  15. S.P. Lin, J. Fluid Mech. 104, 111 (1981).

    MATH  ADS  Google Scholar 

  16. X. Li, R.S. Tankin, J. Fluid Mech. 226, 425 (1991).

    MATH  ADS  Google Scholar 

  17. X. Li, Acta Mech. 106, 137 (1994).

    MATH  MathSciNet  Google Scholar 

  18. J. Cao, X. Li, AIAA J. Prop. Power 16, 623 (2000).

    Google Scholar 

  19. X. Li, Chem. Eng. Sci. 48, 2973 (1993).

    Article  Google Scholar 

  20. X. Li, Advances in Engeeniring Fluid Mechanics (Gulf Publishing Co., 1996).

  21. M. Gaster, J. Fluid Mech. 14, 222 (1962).

    MATH  ADS  MathSciNet  Google Scholar 

  22. S.P. Lin, Z.W. Lian, B.J. Creighton, J. Fluid Mech. 220, 673 (1990).

    MATH  ADS  Google Scholar 

  23. N. Dombrowski, D. Hasson, D.E. Ward, Chem. Eng. Sci. 12, 35 (1960).

    Article  Google Scholar 

  24. D. Weihs, J. Fluid Mech. 87, 289 (1978).

    MATH  ADS  Google Scholar 

  25. K. Masters, Spray Drying Handbook, 4th edition (John Wiley & Sons, New York, 1985).

  26. S. Middleman, Modeling Axisymmetric Flows (Academic Press, New York, 1995).

  27. A.L. Yarin, Free Liquid Jets and Films: Hydrodynamic and Rheology (Longman Science and Technology, 1993).

  28. A. Mansour, N. Chigier, Phys. Fluids A 2, 706 (1990).

    Article  ADS  Google Scholar 

  29. A. Mansour, N. Chigier, Phys. Fluids A 3, 2971 (1991).

    Article  ADS  Google Scholar 

  30. A. Lozano, C.T. Call, C. Dopazo, A. Garcia-Olivares, Atomiz. Sprays 6, 77 (1996).

    MathSciNet  Google Scholar 

  31. A. Lozano, A. Garcia-Olivares, C. Dopazo, Phys. Fluids 10, 2188 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. I. Kim, W.A. Sirignano, J. Fluid Mech. 410, 14 (2000).

    Article  Google Scholar 

  33. W.A. Sirignano, C. Mehring, Prog. En. Combust. Sci. 26, 609 (2000).

    Article  Google Scholar 

  34. E.A. Ibrahim, E.T. Akpan, Acta Mech. 131, 153 (1998).

    MATH  Google Scholar 

  35. J. Eggers, Phys. Rev. Lett. 71, 3458 (1993).

    Article  ADS  Google Scholar 

  36. J.R. Melcher, Continuum Electromechanics (MIT Press, Cambridge, Mass., 1981).

  37. D.H. Michael, M.E. O’Neill, J. Fluid Mech. 41, 571 (1970).

    MATH  ADS  Google Scholar 

  38. A.A. Mohamed, E.F. Elshehawey, Y.O. El-Dib, J. Chem. Phys. 85, 445 (1986).

    Article  ADS  Google Scholar 

  39. N.T. Eldabe, E.F. Elshehawey, G.M. Moatimid, A.A. Mohamed, J. Math. Phys. 26, 2072 (1989).

    Article  ADS  Google Scholar 

  40. M.F. El-Sayed, Phys. Rev. E 60, 7588 (1999).

    Article  ADS  Google Scholar 

  41. M.F. El-Sayed, M.I. Syam, submitted to J. Phys. A (2004).

  42. A. Speranzo, M. Ghadiri, M. Newman, L.S. Osseo, G. Ferrari, J. Electrostat. 51-52, 494 (2001).

    Google Scholar 

  43. G.D. Crapper, Introduction to Water Waves (John Wiley & Sons, New York, 1984).

  44. R.H. Rangel, W.A. Sirignano, Phys. Fluids A 3, 2392 (1991).

    Article  MATH  ADS  Google Scholar 

  45. E.A. Ibrahim, AIAA J. 31, 2376 (1993).

    Article  MATH  Google Scholar 

  46. S.K. Malik, M. Singh, Quart. Appl. Math. 41, 273 (1983).

    MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, M.F. Three-dimensional electrohydrodynamic temporal instability of a moving dielectric liquid sheet emanated into a gas medium. Eur. Phys. J. E 15, 443–455 (2004). https://doi.org/10.1140/epje/i2004-10076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10076-2

PACS.

Navigation