Skip to main content
Log in

Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Proteins involved in membrane fusion, such as SNARE or influenza virus hemagglutinin, share the common function of pulling together opposing membranes in closer contact. The reduction of inter-membrane distance can be sufficient to induce a lipid transition phase and thus fusion. We have used functionalized lipids bearing DNA bases as head groups incorporated into giant unilamellar vesicles in order to reproduce the reduction of distance between membranes and to trigger fusion in a model system. In our experiments, two vesicles were isolated and brought into adhesion by the mean of micromanipulation; their evolution was monitored by fluorescence microscopy. Actual fusion only occurred in about 5% of the experiments. In most cases, a state of “hemifusion” is observed and quantified. In this state, the outer leaflets of both vesicles’ bilayers merged whereas the inner leaflets and the aqueous inner contents remained independent. The kinetics of the lipid probes redistribution is in good agreement with a diffusion model in which lipids freely diffuse at the circumference of the contact zone between the two vesicles. The minimal density of bridging structures, such as stalks, necessary to explain this redistribution kinetics can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Weber et al. , Cell 92, 759 (1998).

    Article  Google Scholar 

  2. S.M. Small, The Physical Chemistry of Lipids. From Alkanes to Phospholipids (Plenum Publishing Corporation, New York, 1986).

  3. J.A. McNew et al. , J. Cell Biol. 150, 105 (2000).

    Article  Google Scholar 

  4. W. Almers, F.W. Tse, Neuron 4, 813 (1990).

    Article  Google Scholar 

  5. P. Durrer et al. , J. Biol. Chem. 271, 13417 (1996).

    Article  Google Scholar 

  6. R. Jahn, T.C. Südhof, Annu. Rev. Biochem. 68, 863 (1999).

    Article  Google Scholar 

  7. L. Yang, H.W. Huang, Science 297, 1877 (2002).

    Article  Google Scholar 

  8. B.R. Lentz, J.K. Lee, Mol. Membr. Biol. 16, 279 (1999).

    Article  Google Scholar 

  9. W. Helfrich, R.-M. Servuss, Nuovo Cimento D 3, 137 (1984).

    Google Scholar 

  10. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, San Diego, 1985).

  11. L. Lis et al. , Biophys. J. 37, 667 (1982).

    Google Scholar 

  12. R.P. Rand, V.A. Parsegian, Biochim. Biophys. Acta 988, 351 (1989).

    Article  Google Scholar 

  13. F. Pincet, L. Lebeau, S. Cribier, Eur. Biophys. J. 30, 91 (2000).

    Article  Google Scholar 

  14. F. Pincet et al. , Phys. Rev. Lett. 73, 2780 (1994).

    Google Scholar 

  15. E. Perez et al. , Eur. Phys. J. B 6, 1 (1998).

    Google Scholar 

  16. R.L. Ornberg, T.S. Reese, J. Cell Biol. 90, 40 (1981).

    Article  Google Scholar 

  17. M.M. Kozlov, L.V. Chernomordik, Biophys. J. 75, 1384 (1998).

    Google Scholar 

  18. P.I. Kuzmin, J. et al. , Proc. Natl. Acad. Sci. USA 98, 7325 (2001).

    Article  Google Scholar 

  19. L. Lebeau et al. , Chem. Phys. Lipids 62, 93 (1992).

    Article  Google Scholar 

  20. M.I. Angelova et al. , Progr. Colloid Polym. Sci. 89, 127 (1992).

    Google Scholar 

  21. L. Mathivet, S. Cribier, P.F. Devaux, Biophys. J. 70, 1112 (1996).

    Google Scholar 

  22. R. Kwok, E. Evans, Biophys. J. 35, 637 (1981).

    Google Scholar 

  23. M. Arrio-Dupont et al. , Biophys. J. 70, 2327 (1996).

    Google Scholar 

  24. E. Evans et al. , Science 273, 933 (1996).

    Google Scholar 

  25. T.J. McIntosh, D. Magid, in Phospholipids Handbook, edited by G. Cevc (Dekker, New York, 1993).

  26. C. Helm, J.N. Israelachvili, P. Mc Guiggan, Biochemistry 31, 1794 (1992).

    CAS  PubMed  Google Scholar 

  27. T. Kuhl et al. , Langmuir 12, 3003 (1996).

    Article  Google Scholar 

  28. S.A. Safran, T.L. Kuhl, J.N. Israelachvili, Biophys. J. 81, 659 (2001).

    Google Scholar 

  29. L. Chernomordik et al. , Biophys. J. 69, 922 (1995).

    Google Scholar 

  30. D. Siegel, Biophys. J. 65, 2124 (1993).

    CAS  PubMed  Google Scholar 

  31. E. Evans, D. Needham, J. Phys. Chem. 91, 4219 (1987)

    Google Scholar 

  32. R.J. Rubin, Y. Chen, Biophys. J. 58, 1157 (1990).

    Google Scholar 

  33. L.K. Tamm, H.M. McConnell, Biophys. J. 47, 105 (1985).

    Google Scholar 

  34. H.C. Berg, E.M. Purcell, Biophys. J. 20, 193 (1977).

    MATH  Google Scholar 

  35. V. Marchi-Artzner et al. , J. Phys. Chem. 100, 13844 (1996).

    Article  Google Scholar 

  36. F.S. Cohen et al. , J. Cell Biol. 98, 1054 (1984).

    Article  Google Scholar 

  37. G.B. Melikyan, J.M. White, F.S. Cohen, J. Cell Biol. 131, 679 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Heuvingh.

Additional information

Received: 26 May 2004, Published online: 3 August 2004

PACS:

87.16.Dg Subcellular structure and processes: Membranes, bilayers, and vesicles - 87.15.Vv Biomolecules: structure and physical properties: Diffusion - 64.70.Nd Structural transitions in nanoscale materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuvingh, J., Pincet, F. & Cribier, S. Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance. Eur. Phys. J. E 14, 269–276 (2004). https://doi.org/10.1140/epje/i2003-10151-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10151-2

Keywords

Navigation