Skip to main content
Log in

Ionic diffusion and space charge polarization in structural characterization of biological tissues

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this study, a new approach to the analysis of the low-frequency (1-107 Hz) dielectric spectra of biological tissue, has been described. The experimental results are interpreted in terms of ionic diffusion and space charge polarization according to Sawada’s theory. The new presentation of dielectric spectra, i.e. (\(\partial \varepsilon ' / \partial \ln f) \cdot f\) has been used. This method results in peaks which are narrower and better resolved than both the measured loss peaks and an alternative loss quantity \(\partial \varepsilon '/ \partial \ln f\). The presented method and Sawada’s expression have been applied to the analysis of changes in the spatial molecular structure of a collagen fibril network in pericardium tissue exposed to glutaraldehyde (GA), with respect to the native tissue. The diffusion coefficient of ions was estimated on the basis of a dielectric dispersion measurement for an aqueous NaCl solution with a well-calibrated distance between the electrodes. The fitting procedure of a theoretical function to the experimental data allowed us to determine three diffusive relaxation regions with three structural distance parameters \(d_{\rm s}\), describing the spatial arrangement of collagen fibrils in pericardium tissue. It has been found that a significant decrease in the structural distance \(d_{\rm s}\) from 87 nm to 45 nm may correspond to a reduction in the interfibrillar distance within GA cross-linked tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bone, B.Z. Ginzburg, H. Morgan, G. Wilson, B. Zaba, Phys. Med. Biol. 38, 511 (1993).

    Article  Google Scholar 

  2. Jian-Zhong Bao, C.C. Davis, M.L. Swicord, Biophys. J. 66, 2173 (1994).

    Google Scholar 

  3. M. Jastrzebska, B. Cwalina, J. Zalewska-Rejdak, T. Wilczok, A. Kocot, IEEE Trans. Dielectr. Electr. Insulat. 8, 527 (2001).

    Article  Google Scholar 

  4. V. Samouillan, A. Lamurc, E. Maurel, J. Dandurand, C. Lacabanne, M. Spina, J. Biomater. Sci. Polym. Ed. 11, 583 (2000).

    Article  Google Scholar 

  5. K.R. Foster, H.P. Schwan, Crit. Rev. Biomed. Eng. 17, 25 (1996).

    MATH  Google Scholar 

  6. A.K. Jonscher, J. Phys. D 32, R57 (1999).

  7. C. Gabriel, S. Gabriel, E. Corthout, Phys. Med. Biol. 41, 2231 (1996).

    Article  Google Scholar 

  8. S. Gabriel, R.W. Lau, C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).

    Article  Google Scholar 

  9. S. Gabriel, R.W. Lau, C. Gabriel, Phys. Med. Biol. 41, 2271 (1996).

    Article  Google Scholar 

  10. J.W. Pitera, M. Falta, W.F. van Gunsteren, Biophys. J. 80, 2546 (2001).

    Google Scholar 

  11. V. Raicu, T. Saibara, H. Enzan, A. Irimajiri, Bioelectrochem. Bioenerg. 47, 333 (1998).

    Article  Google Scholar 

  12. L.A. Dissado, Phys. Med. Biol. 35, 1487 (1990).

    Article  Google Scholar 

  13. V. Raicu, T. Sato, G. Raicu, Phys. Rev. E 64, 021916 (2001).

    Article  Google Scholar 

  14. A. Sawada, Y. Nakazono, K. Tarumi, S. Naemura, Mol. Cryst. Liq. Cryst. 318, 225 (1998).

    Google Scholar 

  15. A. Sawada, K. Tarumi, S. Naemura, Jpn. J. Appl. Phys. 38, 1418 (1999).

    Article  Google Scholar 

  16. A. Sawada, K. Tarumi, S. Naemura, Jpn. J. Appl. Phys. 38, 1423 (1999).

    Article  Google Scholar 

  17. W. Haase, S. Wróbel, Relaxation Phenomena (Springer-Verlag, Berlin-Heidelberg, 2003).

  18. E. Khor, Biomaterials 18, 95 (1997).

    Article  Google Scholar 

  19. M. Jastrzebska, R. Wrzalik, A. Kocot, J. Zalewska-Rejdak, B. Cwalina, J. Biomater. Sci. Polym. Ed. 14, 185 (2003).

    Article  Google Scholar 

  20. E.A. Talman, D.R. Boughner, Ann. Thorac. Surg. 60:s, 369 (1995).

  21. J.M. Garcia Paez, E. Jorge-Herrero, A. Carrera, I. Millan, A. Rocha, P. Calero, J. Salwador, N. Sainz, J. Mendez, L.L. Castillo-Olivares, Biomaterials 22, 2759 (2001).

    Article  Google Scholar 

  22. A. Jayakrishnan, S.R. Jameella, Biomaterials 17, 471 (1996).

    Article  Google Scholar 

  23. J.M. Ruijgrok, J.R. De Wijn, M.E. Boon, J. Mater. Sci.: Mater. Med. 5, 80 (1994).

    Google Scholar 

  24. M. Wübbenhorst, J. van Turnhout, Dielectr. Newslett., November 2000.

  25. K. Liao, E. Seifter, D. Hoffman, E.L. Yellin, R.W.M. Frater, Artif. Organs 16, 361 (1992).

    Google Scholar 

  26. M.S. Sacks, D.B. Smith, Biomaterials 19, 1027 (1998).

    Article  Google Scholar 

  27. W.D. Comper, T.C. Laurent, Phys. Rev. 58, 255 (1978).

    Google Scholar 

  28. W. Ngwa, O. Geier, F. Stallmach, L. Naji, J. Schiller, K. Arnold, Eur. Biophys. J. 31, 73 (2002).

    Article  Google Scholar 

  29. M. Jastrzebska, R. Wrzalik, A. Kocot, J. Zalewska-Rejdak, B. Cwalina, J. Raman Spectrosc. 34, 424 (2003).

    Article  Google Scholar 

  30. S.E. Langdon, R. Chernecky, Ch.A. Pereira, D. Abdulla, J.M. Lee, Biomaterials 20, 137 (1999).

    Article  Google Scholar 

  31. K. Kato, G. Bar, H.-J. Cantow, Eur. Phys. J. E 6, 7 (2001).

    Article  Google Scholar 

  32. D.R. Baselt, J.-P. Revel, J.D. Baldeschwieler, Biophys. J. 65, 2644 (1993).

    Google Scholar 

  33. M.E. Nimni, R.D. Harknes, in Collagen: Biochemistry, edited by M.E. Nimni, Vol. 1 (CRC Press, Boca Raton, FL, 1998).

  34. W.A. Naimark, J.M. Lee, H. Limeback, D.T. Cheung, Am. J. Physiol. - Heart Circ. Physiol. 263, H1095 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jastrzebska.

Additional information

Received: 3 November 2003, Published online: 22 June 2004

PACS:

77.22.-d Dielectric properties of solids and liquids - 87.14.-g Biomolecules: types

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastrzebska, M., Kocot, A. Ionic diffusion and space charge polarization in structural characterization of biological tissues. Eur. Phys. J. E 14, 137–142 (2004). https://doi.org/10.1140/epje/i2003-10143-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10143-2

Keywords

Navigation