Skip to main content
Log in

Miscible displacement of non-Newtonian fluids in a vertical tube

  • Original Paper
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The influence of rheology on the miscible displacement of a viscous fluid by a less viscous, Newtonian one in a vertical tube is studied experimentally as a function of the flow velocity. For Newtonian displaced fluids the transient residual film thickness \(h_{\rm ri}\) is nearly \(38\%\) of the tube radius at large viscosity ratios between the two fluids in agreement with experimental and numerical results from the literature. For shear-thinning fluids with a zero yield stress (mostly xanthan-water solutions), \(h_{\rm ri}\) decreases down to \(28{\rm --}30\%\) of the radius for the most concentrated solutions. For fluids with a non-zero yield stess, \(h_{\rm ri}\) further decreases down to 24-25% of the radius. The orders of magnitude of these values can be obtained through numerical simulations (commercial code) for the various types of fluids. Instabilities of the film at its boundary develop downstream and lead to a reduction of the final thickness of the film at longer times: this reduction is larger for lower viscosity ratios and larger velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.B. Nelson (Editor), Well Cementing, Developments in Petroleum Science (Elsevier, Amsterdam, 1990).

  2. R.W. Flumerfelt, SPE paper 4486 presented at the 1973 SPE-AIME Annual Fall Meeting, Las Vegas, NV, 1975.

  3. I.A. Frigaard, M. Allouche, C. Gabard-Cuoq, SPE paper 64998 presented at the 2001 SPE-AIME Annual Fall Meeting, Houston, TX, 2001.

  4. M. Rabaud, P. Gondret, Interfacial instability in viscous flow, parts 1 and 2, in Thin Liquid Film and Coating Processes, May 26-29, 1997, VKI lecture series monograph 1997-06 (von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, 1997).

  5. D.D. Joseph, Y. Renardy, Fundamentals of Two-Fluid Dynamics. Part 2: Lubricated Transport, Drops and Miscible Liquids, Interdisciplinary Applied Mathematics Series, Vol. 4 (Springer Verlag, New York, 1993).

  6. D.D. Joseph, R. Bai, K.P. Chen, Y.Y. Renardy, Annu. Rev. Fluid Mech. 29, 65 (1997).

    Article  ADS  Google Scholar 

  7. A. Lindner, D. Bonn, E. Corvera Poiré, M. Ben-Amar J. Meunier, J. Fluid Mech. 469, 237 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. H.H. Hu, D.D. Joseph, J. Fluid Mech. 205, 359 (1989).

    Article  ADS  Google Scholar 

  9. D.D. Joseph, Y. Renardy, Fundamentals of Two-Fluid Dynamics. Part 1: Mathematical Theory and Applications, Interdisciplinary Applied Mathematics Series, Vol. 3 (Springer Verlag, New York, 1993).

  10. J. Li, Y. Renardy, J. Non-Newton. Fluid Mech. 70, 155 (1999).

    Google Scholar 

  11. R. Bai, K. Chen, D.D. Joseph, J. Fluid Mech. 240, 97 (1992).

    Article  ADS  Google Scholar 

  12. A. Coward, Y. Renardy, J. Fluid. Mech. 391, 123 (1997).

    MathSciNet  Google Scholar 

  13. P. Petitjeans, T. Maxworthy, J. Fluid Mech. 326, 37 (1996).

    Article  ADS  Google Scholar 

  14. C.Y. Chen, E. Meiburg, J. Fluid Mech. 326, 57 (1996).

    Article  ADS  Google Scholar 

  15. E. Lajeunesse, J. Martin, N. Rakotomalala, D. Salin, Phys. Rev. Lett. 79, 5254 (1997).

    Article  ADS  Google Scholar 

  16. E. Lajeunesse, J. Martin, N. Rakotomalala, D. Salin, Y. Yortsos, J. Fluid Mech. 398, 299 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Scoffoni, E. Lajeunesse, G.M. Homsy, Phys. Fluids 13, 553 (2001).

    Article  ADS  Google Scholar 

  18. A. Tehrani, J. Ferguson, S.H. Bittleston, SPE paper 24569 presented at the 1992 SPE-AIME Annual Fall Meeting, Washington, DC, 1992.

  19. A. Tehrani, S.H. Bittleston, P.J.G. Long, Expts. Fluids 14, 246 (1993).

    Article  ADS  Google Scholar 

  20. Z. Yang, Y.C. Yortsos, Phys. Fluids 9, 286 (1997).

    Article  ADS  Google Scholar 

  21. E.J. Hinch, J. Fluid Mech. 144, 463 (1984).

    Article  ADS  Google Scholar 

  22. F. Charru, E.J. Hinch, J. Fluid Mech. 414, 194 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Allouche, I.A. Frigaard, G. Sona, J. Fluid Mech. 424, 243 (2000).

    Article  ADS  Google Scholar 

  24. Fluid Dynamics Analysis Package FIDAP, Fluent Inc., Lebanon (New-Hampshire, USA).

  25. D. Salin, W. Schon, J. Phys. Lett. 42, L-477 (1981).

    Article  Google Scholar 

  26. J.C. Bacri, N. Rakotomalala, D. Salin, Phys. Rev. Lett. 58, 2035 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Hulin.

Additional information

Received: 15 February 2003, Published online: 8 July 2003

PACS:

47.20.Gv Hydrodynamic stability: Viscous instability - 83.60.Wc Rheology: Flow instabilities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabard, C., Hulin, JP. Miscible displacement of non-Newtonian fluids in a vertical tube. Eur. Phys. J. E 11, 231–241 (2003). https://doi.org/10.1140/epje/i2003-10016-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10016-8

Keywords

Navigation