Skip to main content
Log in

Polymer thin films and surfaces: Possible effects of capillary waves

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract:

It is discussed how the proximity of a free surface or mobile interface may affect the strain relaxation behavior in a viscoelastic material, such as a polymer melt. The eigenmodes of a viscoelastic film are thus derived, and applied in an attempt to explain the experimentally observed substantial shift of the glass transition temperature of sufficiently thin polymer films with respect to the bulk. Based on the idea that the polymer freezes due to memory effects in the material, and exploiting results from mode-coupling theory, the experimental findings of several independent groups can be accounted for quantitatively, with the elastic modulus at the glass transition temperature as the only fitting parameter. The model is finally applied discussing the possibility of polymer surface melting. A surface molten layer is predicted to exist, with a thickness diverging as the inverse of the reduced temperature. A simple model of thin polymer film freezing emerges which accounts for all features observed experimentally so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 8 August 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herminghaus, S. Polymer thin films and surfaces: Possible effects of capillary waves. Eur. Phys. J. E 8, 237–243 (2002). https://doi.org/10.1140/epje/i2001-10056-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2001-10056-0

Navigation