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available at the end of the article patterns of historical crimes to predict aggregate volumes of crime incidents at
specific locations over time. Under the umbrella of the crime opportunity theory, that
suggests that human mobility can play a role in crime generation, increasing
attention has been paid to the predictive power of human mobility in place-based
short-term crime models. Researchers have used call detail records (CDR), data from
location-based services such as Foursquare or from social media to characterize
human mobility; and have shown that mobility metrics, together with historical crime
data, can improve short-term crime prediction accuracy. In this paper, we propose to
use a publicly available fine-grained human mobility dataset from a location
intelligence company to explore the effects of human mobility features on short-term
crime prediction. For that purpose, we conduct a comprehensive evaluation across
multiple cities with diverse demographic characteristics, different types of crimes and
various deep learning models; and we show that adding human mobility flow
features to historical crimes can improve the F1 scores for a variety of neural crime
prediction models across cities and types of crimes, with improvements ranging from
2% to 7%. Our analysis also shows that some neural architectures can slightly improve
the crime prediction performance when compared to non-neural regression models
by at most 2%.
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1 Introduction

Environmental criminology provides theoretical foundations to study crimes from the
perspective of places [19, 48]. Places with different urban functions can be viewed as crime
attractors and crime generators [7]. Through the lens of place-based crime prediction, we
can study the complex relationship between future and historical crimes, the built envi-
ronment and social interactions. In this paper, we focus on short-term, place-based crime
prediction ie., the identification of places where there is a high probability of crime in-
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cidents in the next day or hour. Short-term crime prediction is generally used to better
allocate policing resources so as to respond to crimes more efficiently.

Crime-prediction with historical data only. Various models have been developed to
tackle place-based short-term crime prediction using historical crime data. Kernel den-
sity estimation—which was very common in the early efforts of crime prediction—uses
the estimated density of historical crimes as a measure of risk for future crime areas in
the short term [12]. Epidemiological models have also been used to explain crime; for ex-
ample, Mohler et al. proposed an epidemic-type aftershock sequence model to utilize the
near repetition patterns of historical crimes [31], whereby the spatio-temporal patterns of
crimes in one location increase the probability of other incidents occurring at nearby loca-
tions in the short term [23]. In addition, the recent popularity of deep learning has brought
in several deep learning approaches to model the non-linear spatio-temporal patterns of
crime in the short term [18, 21, 22, 51].

Crime prediction with historical and mobility data. In the past few years, and moti-
vated by crime opportunity theories, researchers have explored enhancing these place-
based short-term predictive models with human mobility data [24, 38, 40]. Crime oppor-
tunity theories attempt to explain the occurrence of crimes in terms of human behaviors
by looking into how variations in people’s routine activities might affect the opportuni-
ties for crime, e.g, the higher the presence of individuals at a given place, the more or less
crimes could happen, depending on the type of crime [33]. Place-based short-term crime
prediction models have incorporated the crime opportunity theory by modeling routine
activities using human mobility data; and have shown that incorporating mobility data
can improve the accuracy of the predictions [24, 38, 40]. The mobility data used to predict
crime has been extracted from call detail records (CDR) [3], from location-based services
such as Foursquare [24, 38], or from social media such as geo-localized Twitter [52]; and
has been generally used to compute the footfall i.e., number of people present at a given
place. Although footfall has been shown to improve crime prediction accuracy when com-
pared to using only historical crime data [38], recent work by Kadar et al. has revealed that
incorporating more nuanced mobility data, such as incoming and outgoing flows to/from
regions, or regions visited during a trip (a.k.a pass-through flows), can improve the crime
prediction accuracy even further [24].

Limitations. Kadar et al. work has been pivotal—and unique—in showing that more
complex mobility features can be used to improve place-based short-term crime predic-
tion models. However, there are three important limitations in that work. First, Kadar’s
work computes mobility flows from Foursquare data by using consecutive check-ins to
define incoming and outgoing flows. Nevertheless, these flows might represent incom-
plete mobility behaviors since people might not check-in on Foursquare all the locations
visited. Second, to identify regions visited in a trip (pass-through flows), Kadar et al. sim-
ulate trajectories in a city via shortest-paths routes, since Foursquare does not collect any
route (trajectory) information. However, prior research has shown that people do not
always make shortest-path decisions when traveling [54]. Third, Kadar’s work only ex-
plores non-neural models as predictors. However, extensive recent literature has shown
that deep learning approaches can outperform simpler predictive approaches in the con-
text of short-term crime prediction due to their ability to handle complex spatio-temporal
data [18, 21, 51].



Wau et al. EPJ Data Science (2022) 11:53 Page 3 of 20

We posit that although Kadar’s work is an important first effort in the exploration of
more complex mobility features as crime predictors, their approach can be improved (i)
by using features extracted from actual mobility flows, rather than approximating flows
from Foursquare data—we propose to compute mobility flows from GPS data collected by
location intelligence companies; and (2) by exploring the performance of more complex
deep learning models. The main contributions of this paper are:

« An analysis of the effect of mobility features—modeled as flows and computed using
GPS data from a location intelligence company—on the accuracy of place-based
short-term crime prediction models, when compared to crime predictors solely based
on historical crime data. Our results show that mobility features, represented as a
comprehensive set of flow metrics between census tracts [26], do in fact enhance the
performance of next-day crime prediction models; thus confirming prior work
performed with potentially incomplete and simulated flows from Foursquare [24].

+ An extensive experimental evaluation of the performance of deep learning predictive
models compared to simpler regression models. Our work shows that deep learning
models can outperform simpler regression approaches, although the improvement is
limited to a maximum 2% increase in the F1 score.

+ An extensive experimental evaluation by looking at place-based short-term crime
prediction for four cities in the US with diverse demographic characteristics:
Baltimore, Minneapolis, Austin and Chicago; and for eight different types of crime
divided into two groups: (i) property crimes including arson, burglary, larceny-theft,
and motor vehicle theft; and (ii) violent crimes including aggravated assault, forcible
rape, murder, and robbery. Crime patterns might differ across geographies and types
of crimes; by exploring predictive models across a broad spectrum—the largest to
date—we will be able to discuss performance across a large number of settings.

The rest of the paper is organized as follows. Section 2 presents related work, followed by

a thorough description of all the datasets used in this paper in Sect. 3. Section 4 presents a
description of the short-term crime prediction models we propose while Sect. 5 describes
the evaluation results. Finally, Sect. 6 presents the limitations of our approach, followed

by conclusions in Sect. 7.

2 Related work

We first describe approaches to spatio-temporal modeling and prediction of crime inci-
dents solely based on the use of historical crime data; and we continue with a discussion of
prior work showing that incorporating mobility data can enhance crime prediction meth-

ods.

2.1 Crime prediction

Crime prediction has been a long standing research topic of interest to researchers
from different backgrounds. Environmental criminology has revealed numerous spatio-
temporal patterns across different types of crimes [15, 20]. For example, researchers have
found that crimes are highly concentrated in space and cluster at a range of spatial scales,
with at least half of the crimes taking place in only approximately 5% of street segments in
several cities [48]. Over short time ranges, near repeat victimization has been observed in
different types of crimes over the world [23] i.e., when a crime incident occurs at one loca-
tion, there is a temporary increase in the probability that other crime incidents will occur
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nearby. Over long periods, the concentration of crimes has also been found to be stable:
based on the 14 years (1989-2002) of crime reports in Seattle, Weisburd et al. revealed that
the vast majority of street segments showed a remarkably stable pattern of crime [47].

That crimes stably cluster in both space and time is the basis of crime prediction using
historical crimes [36]. In the early efforts of crime prediction, Geographical Information
System (GIS) enabled the generation of crime maps that assigned predictive risk scores
to places, using techniques such as kernel density estimation based on historical crimes
[6, 12]. Mohler et al. modeled the near repeat victimization with an epidemic-type af-
tershock sequence model and conducted randomized controlled field trials with the Los
Angeles Police Department (LAPD) [31]; and Mondal et al. used space-time permuta-
tion models to identify statistically significant crime clusters in Pune (India) [32]. The
proliferation of machine learning techniques have further helped modeling the complex
and non-linear spatio-temporal correlation of crime incidents as well as other related data
sources, such as point-of-interests and 311 urban service requests data [22, 25]. Lately, the
research field has been dominated by deep learning architectures that have shown accu-
racy improvements over simpler approaches, possibly due to its ability to model complex
spatio-temporal trends. For example, Duan et al. proposed a pure convolution architec-
ture for crime prediction [18]; while other deep learning components, such as recurrent
neural network and self-attention have also utilized to jointly model spatio-temporal pat-
terns of crimes [21, 51]. In this paper, we will evaluate the use of deep learning methods for
place-based crime prediction models that incorporate mobility data reflecting aggregate
spatio-temporal flows across census tracts.

2.2 Modeling crime with human mobility

In addition to the inherent spatio-temporal patterns of crime incidents, there exist var-
ious theories about the relationship between human mobility and crime incidents; and
Browning et al. provide a systematic review for the theoretical foundations at the inter-
section of place, neighborhood, crimes and human mobility. For example, the routine ac-
tivities theory puts an emphasis on mobility and the social characteristics of micro-places;
the social disorganization theory has an implicit focus on mobility through the lens of
neighborhood-level social interaction [9]; while the opportunity makes the thief theory
claims that the opportunity is the cause of crime [14] i.e., the higher the presence of tar-
gets such as people and property, the more crimes could happen.

With the availability of large scale human mobility datasets, such as check-ins, call detail
records and GPS data, various studies have provided empirical evidence about the rela-
tionship between crime and human mobility for both short- and long-term crime predic-
tion. One of the most common mobility features used in these studies is footfall, defined as
the number of individuals present in a given area at a given time span. Using footfall and
other features, Bogomolov et al. built long-term predictive models that could determine
crime occurrence in the following month [3]; and Caminha et al. showed that increased
footfall in a particular area of the city was proportional to the increasing rate of property
crimes happening in the region [10]. Kadar and Pletikosa extracted footfall from check-
ins, subway and taxi data, along with other census and POI features, to predict the number
of crimes for a given census tract in the next year [25]; De Nedai et al. proposed a spatially
filtered Bayesian Negative Binomial model to study how social, built environment and
footfall influence criminal activity [16]; Rumi et al. proposed a set of footfall dynamic fea-
tures computed from Foursquare check-ins including visitor count, visitor entropy and
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homegeneity or region popularity, and showed that these features improved the perfor-
mance of short-term crime prediction for certain types of crime with F1-score increases
of up to 2% [38]; and Stec et al. showed that deep learning architectures that use footfall
from public transit, together with weather conditions that have been reported to affect
crime, enhance the accuracy of crime predictions [40]. In addition to footfall, Wu et al.
quantified urban spatial structure using human mobility to predict number of crimes for
municipalities in the next year [49, 50].

All these works have shown that footfall metrics can improve crime prediction perfor-
mance when compared to using only historical crime data. However, recent work by Kadar
et al. has revealed that incorporating more nuanced mobility metrics can improve the
prediction performance further [24]. Specifically, Kadar et al. used two mobility features
extracted from Foursquare data: flows between origin and destination census tracts and
pass-thorough flows as regions visited during a trip. While flows measure volume of trips
between origin and destination regions, pass-through flows measure regions that were vis-
ited by travelers without necessarily stopping by. However, the computation of these two
metrics was not straight forward given the nature of Foursquare data. First, the flows com-
puted from Foursquare—by creating a flow between two consecutive check-ins—might
not reflect all flows between regions since people might choose not to check-in at specific
locations thus providing incomplete snapshots of their origin and destination flows. Sec-
ond, pass-through flows are not available in Foursquare data and as a result, Kadar et al.
proposed to simulate trajectories via shortest path routes which might or might not re-
flect the actual routes followed by individuals since shortest paths are not necessarily the
way individuals choose their routes, as shown in prior work [54]. To overcome these two
limitations, in this paper we propose to build on Kadar’s et al. work and explore the use of
mobility features extracted from a location intelligence company that can compute actual,
complete mobility flows between regions. Using these mobility features, our objective will
be to explore whether place-based short-term crime prediction models can be improved
when compared to models exclusively based on historical crime data. In addition, Kadar’s
work only explored non-neural models as predictors. However, as described in the pre-
vious section, extensive recent literature has shown that deep learning approaches can
outperform simpler predictive approaches in the context of short-term crime prediction
due to their ability to handle complex spatio-temporal data [18, 21, 51]. Thus, our objec-
tives in this paper are twofold: evaluate the effectiveness of using actual mobility flow data
in short-term crime prediction models, and analyze the impact of using deep learning

predictive approaches.

3 Data

We use two types of data: crime incidents and human mobility. In this section, we describe
the datasets and provide general statistics for the four cities we evaluate our approach on:
Baltimore (Bal), Minneapolis (Min), Austin (Aus) and Chicago (Chi). These four cities
were chosen based on the diversity of their demographics, as shown in Table 1, with Bal-
timore having majority Black and African-American population, Minneapolis majority
White, Austin has a high White and Latino and Hispanic population and Chicago with a
balanced mix of White, Black and African-American and Hispanic and Latino commu-
nities. By replicating the short-term crime prediction analysis across these four cities, we
will provide a robust analysis across geographies.
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Table 1 The percentage of population across race and ethnicity for the four cities according to the
American Community Survey (2019 ACS 5-year estimates) [42]. The cities are: Baltimore (Bal),
Minneapolis (Min), Austin (Aus) and Chicago (Chi)

% Not Hispanic or Latino, White Alone % Black or African-American % Hispanic or Latino % Asian

Bal 27.54% 62.46% 5.12% 2.59%
Min  59.80% 19.36% 9.58% 6.13%
Aus  49.08% 7.60% 33.64% 7.34%
Chi  3361% 29.48% 28.89% 6.40%

Table 2 Crime occurrence monthly density for the four cities in 2020: Baltimore (Bal), Minneapolis
(Min), Austin (Aus) and Chicago (Chi)

Jan Feb Mar Apr May  Jun Jul Aug  Sep Oct Nov Dec

Property Bal 28.0% 272% 246% 224% 23.6% 250% 240% 227% 247% 256% 242% 21.3%
Crime Min 35.0% 334% 34.1% 353% 37.6% 347% 416% 433% 407% 413% 37.0% 332%
Aus 329% 31.9% 306% 305% 312% 315% 31.8% 343% 350% 333% 36.1% 344%
Chi 235% 226% 197% 166% 19.6% 204% 22.5% 235% 222% 21.0% 19.7% 182%

Violent  Bal 216% 21.1% 218% 17.0% 21.6% 234% 232% 234% 224% 225% 21.1% 186%
Crime Min 94% 93% 107% 85% 103% 13.0% 164% 146% 13.7% 129% 104% 83%
Aus  40% 3.7% 45% 42% 50% 54% 57% 53% 52% 47% 53% 52%
Chi 115% 11.0% 99% 83% 102% 11.6% 129% 128% 124% 11.1% 108% 93%

3.1 Crimeincident data

We obtained the crime incident datasets for the four cities from their open data portals,
covering crimes from January to December, 2020.! Each crime incident is associated with
the crime category it belongs to and with the time and location where it took place. Crime
locations are generally geo-coded to the closest street or block in the city, however, to ac-
count for the potential spatial precision inaccuracy, we use a 50-meter buffer to associate
crime incidents to urban census tracts (a similar approach has been implemented in prior
work e.g,, De Nadai et al. [16], Kadar and Pletikosa [25]). Although crime incidents could
be associated to smaller spatial units, our choice is determined by the availability of human
mobility data at the census tract level only. We group the crime incidents into two types:
property and violent crimes, and we will evaluate short-term crime prediction for each
type separately. Property crimes include arson, burglary, larceny-theft, and motor vehicle
theft; while violent crimes include aggravated assault, forcible rape, murder, and robbery.
Table 2 shows the monthly crime density for each city throughout 2020, where monthly
crime density is computed as the percentage of census tracts with crime incidents during
that month. The table shows that the four cities selected generally suffer from higher vol-
umes of property crimes than violent crimes; and that they represent a diverse group with
some cities suffering from higher volumes of violent and property crimes than others.

3.2 Human mobility data

The pervasive presence of ubiquitous technologies such as smart phones, has allowed for
the collection of large-scale human mobility data. Location intelligence companies like
SafeGraph, collect pseudonymized mobile GPS location data using SDKs installed on indi-
viduals’ mobile phones via mobile apps. SafeGraph offers multiple datasets. For this paper,
we have used daily origin-to-destination flows at the census tract (CT) level from January

1Bal: https://data.baltimorecity.gov/; Min: https://opendata.minneapolismn.gov/;
Aus: https://data.austintexas.gov/; Chi: https://data.cityofchicago.org/;
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Table 3 Human mobility flow statistics for the four cities under study: Baltimore (Bal), Minneapolis
(Min), Austin (Aus) and Chicago (Chi). The numbers in each cell represent the mean (standard
deviation) of the daily average across all census tracts in a given city in 2020. OD flows outside the
city are flows that either start or end in a census tract that is not part of the city of interest

Bal Min Aus Chi
Number of census tracts 200 116 204 809
Volume of in-city OD flow 4040.1 (1733.9) 4004.3 (1653.7) 8167.2 (3866.3) 5307.3(2821.6)
Volume of out-of-city OD flow 1413.6 (1149.9) 2055.8 (1749.5) 21026 (1651.3) 11989 (1646.3)
The number of unique census tracts 38.7 (14.6) 30.5(10.7) 66.8 (20.2) 61.0 (28.5)
connected by in-city OD flow
The number of unique counties 145(11.9) 23.6(20.8) 296(17.2) 15.1 (20.5)
connected by out-of-city OD flow
The number of unique states 59(3.3) 7.0(4.2) 7.7 (4.0) 6.2 (4.0)

connected by out-of-city OD flow

to December, 2020. This dataset is publicly available (see [26]). To extract this dataset,
SafeGraph assigns to each device a home location at the census block group level based
on its night-time activity. Then, it tracks for each device all the trips from its home location
to points-of-interest (POIs) in SafeGraphs’ large POI database. Origin-destination (OD)
flows are finally computed by transforming all the home-to-POls trips to CT(O)-CT(D)
trips and by computing the number of devices associated to each OD across all census
tracts in a city. OD flow volumes are computed at a daily granularity. Since the devices in
SafeGraph’s database account for about 10% of the entire population in the U.S., the OD
flow volumes are re-scaled by the census population. It is important to clarify that, unlike
the only prior work looking into using flows to predict short-term crimes [24], we use ac-
tual origin-destination flows based on GPS data collected by SafeGraph thus enhancing
the state of the art.

Table 3 shows general OD flow volume statistics for the four cities under study for the
year 2020. For each measure, the table shows the mean and standard deviation of its daily
average values across all census tracts in each city. In-city OD flows refer to flows whose
origin and destination census tracts (CT(O) and CT(D)) are within the city; while out-of-
city OD flows are flows in which either the origin or the destination census tract is outside
the city under study. To characterize mobility diversity, the table also shows the number
of unique census tracts connected by in-city OD flows and the number of unique counties
and states connected by out-of-city OD flows. We can observe that most of the OD flows
identified take place within the cities under study, with smaller volumes being associated
to trips to counties outside the city, and even a smaller number to trips to other states.
Consequently, there is a higher diversity in the number of distinct areas visited inside than
outside the city (counties or states). A more detailed description of the features extracted
from this dataset is covered in the next section.

4 Short-term crime prediction with human mobility flows

As stated in the Introduction, our objective is to analyze the effect of mobility features—
modeled as flows and computed using GPS data from a location intelligence company—
on the accuracy of place-based short-term crime prediction models implemented with
deep learning, when compared to crime predictors solely based on historical crime data,
and implemented with simpler, non-neural approaches. In this section, we describe the
problem setting for short-term crime prediction with mobility data, present the models
we will use in our analysis and describe the experimental and evaluation protocols.
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4.1 Problem setting

In this study, we focus on placed-based short-term crime prediction for a given city. For
that purpose, a city is divided into N spatial units S = {s1,s2,...,sy} which for this paper
are defined as census tracts. We choose census tracts as spatial units because the human
mobility flow dataset is only available at the census tract level. We frame short-term crime
prediction as determining whether there will be at least one crime the next day at a given
census tract using prior crime and mobility data for that tract. Crime occurrences at a
census tract s; on day ¢ are denoted as y;, and y;, = 1 is referred to as a crime hotspot.

For each census tract s;, we compute two sets of daily predictive features: 1) historical
crimes (C), defined as the daily number of past crime incidents; the input sequence for
crime prediction at day ¢ is represented as C;; = {¢;—7, Cit—T+1,- -, Cir—1} With T being the
length of the look-back period i.e., the time range used to characterize history and c;;_, be-
ing the number of crime incidents d days before day ¢; and 2) mobility features (M), defined
as a set of ten daily features extracted from SafeGraph’s daily OD matrices and denoted
as M, = {M’lj’t|j €{1,2,...,10}} and M’l:‘t = {nqit_T,rth_Tﬂ,...,m’l:yt_l}, where m’l;t_d is the
value of the j-th mobility feature at d days before day ¢. The ten features identified charac-
terize mobility volumes and mobility diversity. Mobility volume features characterize the
daily total number of people going in (inflow) and out (outflow) of a census tract within
or outside the city under study, which have been shown to be related with the volumes of
crime incidents [3, 25, 49]; while mobility diversity features characterize the regional in-
fluence, i.e., the number of unique regions visited by in/outflows, including census tracts,
counties and states. Past research has shown that crimes committed by visitors are asso-
ciated to different patterns (behaviors) than those of residents [4]; and that pass-through
traffic information improves crime prediction accuracy [24]. Therefore, we extract mo-
bility diversity features to reflect the connections between the census tract s; and other
regions. Table 4 shows a summary of all the features used in the short-term crime pre-
diction models. Besides crime and human mobility data, we also add Day of week to the
feature set to capture the difference between crime data and human mobility behaviors
during weekdays and weekends.

In order to evaluate the effects of predicting short-term crime with the mobility features
described, we consider 3 combinations of input (predictive) features to the model: 1) C: the
input contains only the historical crime features; 2) M: the input contains only the mobility
features; 3) C + M: the input contains both historical crimes and mobility features.

Problem Statement. Given the temporal sequences of input features (C, M or C + M)
within the look-back period T for all census tracts in a city, predict whether a census tract
will be a hotspot in the next day y;; = 1,7 € [1, N]. The framework of the problem setting
is shown in Fig. 1.

4.2 Models
We explore a wide variety of state-of-art deep learning models to analyze their predictive
power when using crime and/or mobility data as input features.

« Historical average logistics regression (HALR). Historical average is a common baseline
in crime prediction studies [12, 18]. It predicts the risk score of a spatial unit being a
crime hotspot based on the average number of historical crimes for that unit. To
incorporate mobility features within this baseline, we add a logistic regression model.
The input of the logistic model are C;, and M, ;, which represent the average of
historical crimes and mobility features in the look-back period.
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Table 4 Complete list of predictive (input) features for short-term crime prediction models. For
census tract s;, inflow (outflow) means s; is the destination (origin) of the OD flow

Types Features

Crimes Daily number of crimes
Mobility Volumes of in-city inflow
Volumes Volumes of in-city outflow

Volumes of out-of-city inflow
Volumes of out-of-city outflow

Mobility Number of CT connected by in-city inflow

Diversity Number of CT connected by in-city outflow
Number of counties connected by out-of-city inflow
Number of counties connected by out-of-city outflow
Number of states connected by out-of-city inflow
Number of states connected by out-of-city outflow

day of week Day of week
K Look-back period Fezfturg C/IM[C+M,, N (y e
combinations
C/M/C+M.
e L -] < (<) I
e
M}, C/M/C+M;, >~ — | Prediction | — < y;,
model
m, fe] ] @
C/M/C+My_1, YN-1t
@ CIM/C+My, U ywe
Figure 1 Framework of the place-based short-term crime prediction

o Gated recurrent units (GRU). GRU is a variant of recurrent neural networks and is
commonly used for modeling sequential data. In this study, multiple layers of GRU are
stacked to model the temporal dependency between the probability of being the
next-day crime hotspot y;, and the input temporal feature sequences C;; and M; in
the look-back sequence for census tract s;.

o Attention crime prediction (Attn). Since the success of the Transformer model in
natural language processing [45], the attention mechanism has become very popular
in modeling sequential data. Here, we use the encoder of the Transformer model with
an approach similar to the BERT training setting [17] i.e., we add a cls token at the
start of the input feature sequences C;; and M;, in the look-back period to predict the
probability of crime incidents occurring in census tract s; in the next day.

+ Graph convolution network (GCN). By treating all census tracts in a city as nodes in a
graph, we can apply graph neural networks to model the spatial dependency of the
historical crimes and mobility features among census tracts. In the graph of census
tracts, the edges between each pair of census tracts is defined as queen neighbouring
(there is an undirected edge between two census tracts if they are queen neighbours,
i.e., their boundaries intersect with each other). Graph convolution network (GCN) is
one of the earliest neural network architectures for graph structured data [27].
Although more sophisticated graph neural network architectures have been proposed,
a simple GCN has been shown to outperform more sophisticated ones if the same



Wau et al. EPJ Data Science (2022) 11:53 Page 10 of 20

Sg |euer]

S6  [eoer ot

Sg  eact] Car-1

@ ange 52 (el || Jee
-1 Cra-1

S7 |erer

S9 feser i

Figure 2 Arrange the nearest neighbors set for the target census tract s; and construct the 2D feature map
for historical crimes. In the neighboring set of 57, 5, and s3 is the closest to $y; 54 and s5 are the next closest to
s; and s3 respectively; s and s are the next closest to s4 and ss; sg and sg are the next closest to s and s7.
Similar process is applied to each of the ten mobility features

hyper-parameter selection and training procedures are used [39]. Therefore, in this
study, we adopt GCN for its simplicity and effectiveness for our crime prediction task.

+ GCN with gated 1D convolution (GGConv). The above deep learning models consider
either the temporal or the spatial dependency of the input features for the census
tracts. To model the temporal and spatial dependency simultaneously, Yu et al.
proposed a spatio-temporal convolutional block, which consists of a two gated 1d
convolution for the temporal dependency and one GCN layer for the spatial
dependency [53]. For this model, we use the same definition of census tracts graph as
for the GCN previously described.

« Neighbor convolution (NbConv). Neighbor convolution models that account for
spatio-temporal dependency have been used for crime prediction using historical data
over a spatial grid [18]. To adapt this model to our setting, where the spatial units are
census tracts (non-regular division), we extract a fixed-length nearest neighbors set
for each census tract for which the model outputs the next-day crime prediction.
Specifically, we focus on the eight nearest census tracts for each target census tract.
We arrange the target census tract in the middle and sort the nearest neighboring
census tracts from closest to furthest to form a 2D feature map per input feature, as
explained in Fig. 2. Such arrangement allows the kernel of the convolutional layer to
model the spatio-temporal dependency through its local receptive field. These 2D
feature maps are then input to the full convolution architecture. The original model in
[18] contains inception and fractal blocks. In our setting, we discuss results for a
model with only the first regular convolution blocks because it provided better
performance than the full model.

To sum up, HALR is the baseline model that will be used to compare against all the other
deep learning approaches. GRU and Attn will be used to test the importance of model-
ing the temporal dependency of the input features within each census tract, while GCN
models will assess the effect of spatial dependencies among neighboring census tracts on
short-term crime prediction. Finally, GGConv and NbConv model both the temporal and
spatial dependencies of the input features simultaneously, and we will explore whether
using such approach is beneficial to improving short-term crime prediction performance

when compared to simpler models.
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4.3 Experiment and evaluation protocols

Next, we introduce the experiment and evaluation protocols to evaluate the performance
of short-term crime prediction models with mobility features. Given that we have 1 year
of data, we chronologically split the dataset into training (6.5 months), validation (0.5
month), and testing (1 month) sets. The validation set is used to tune the learning rate and
early stopping i.e., deciding the maximum number of epochs for training. Then we re-train
the model using the combination of training and validation set (a total of 7 months) and
use the testing set to make next-day predictions (5 months). The overall performance of
a model is represented by its monthly F1 score, computed comparing the next-day crime
prediction with the daily ground truth over all days for each testing month. This experi-
mental protocol with time series data has also been followed in other related work such
as Huang et al. [21].

In order evaluate whether mobility flow features improve short-term crime prediction
models, we explore three input feature combinations: 1) Historical crime features only
(C); 2) Mobility features only (M) and 3) Historical crimes and Mobility features (C + M).
We use the relative change in the F1 score to evaluate the effect of adding mobility features
to the short-term crime prediction problem. The F1 score using C serves as baseline and
the relative change in the F1 score using C + M (M) is computed as: (Hf;fj‘g(m —1) % 100%.
4.4 Model implementation and hyper-parameters
HALR is implemented using its scikit-learn library with the default hyperparameters. All
neural network models are implemented with the PyTorch library. The neural networks
use Adam as the optimizer with a weight decay of 0.0001 and the learning rate is tuned
using the validation set. The dimension of the hidden states for GRU, GCN, GGConv and
NbConv is 100. These models have 3 layers of their core blocks i.e., gated recurrent units
for GRU, graph convolution for GCN, spatio-temporal block for GGConv and convolution
layer for NbConv. The number of nearest census tracts in NbConv is set as 8. As for Attn,
we follow the Mini setting of BERT,? where the dimensions of the hidden states are 256,
the number of attention heads is 4 and the number of layers of attention is 4. The length
of the look-back period is set to 14 and an analysis of the sensitivity to this parameter is

explained in Sect. 5.2.

5 Model performance analysis
Figure 3 shows the monthly F1 scores for predicting property crimes for each model in
each city using the three different input combinations: historical crimes only (C), mobil-
ity features only (M) and both (C+M). In most cases, the F1 scores using C+M are better
than using only C or M; and this observation is true across cities, test months and models.
In other words, adding mobility features—computed using GPS data from location in-
telligence companies—improves the predictive accuracy of most of the models explored
across all cities. A similar trend was observed for violent crimes.

As C+M is the best combination in most cases, we aim to understand what model is
giving the best performance. For that purpose, we calculate the average monthly F1 score

across the five test months for each model and city for both property and violent crimes.

Zhttps://github.com/google-research/bert
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Figure 3 Monthly F1 scores for predicting next-day property crime hotspots. Each row represents the F1
scores for one city across all predictive models: Baltimore (Bal), Minneapolis (Min), Austin (Aus) and Chicago
(Chi). The blue lines represent F1 scores for models with only crime data (C); the orange lines represent F1
scores for models that use only mobility data (M) and the green line are F1 scores both models that use both
(C+M)

Table 5 Average (standard deviation) of monthly F1 score using C+M for property crime prediction
from Aug. to Dec. 2020 for each city

Bal Min Aus Chi
HALR 0.403 (0.015) 0.557 (0.039) 0.579(0.014) 0.398 (0.026)
GRU 0.405 (0.017) 0.567 (0.042) 0.586 (0.010) 0402 (0.027)
Attn 0.408 (0.018) 0.564 (0.038) 0.588 (0.011) 0.400 (0.024)
GCN 0.363(0.016) 0.528 (0.0571) 0.551(0.012) 0.375 (0.030)
GGConv 0.391 (0.014) 0.544 (0.033) 0.576 (0.015) 0.386 (0.027)
NbConv 0.407 (0.013) 0.571 (0.039) 0.593 (0.012) 0.406 (0.026)

Tables 5 and 6 shows the results. Overall, GRU, Attn, GGConv, and NbConv have com-
parable prediction performance and NbConv is the model with best performance in most
scenarios, i.e., with the largest F1 scores in three out of four cities for both property crimes
and violent crimes. On the other hand, GCN is the model with the worst performance
across all scenarios. Since GCN is the only deep learning model in our evaluation that
exclusively considers spatial dependency, these results suggest the importance of includ-
ing temporal dependencies in short-term crime prediction models. We also observe from
Fig. 3 that NbConv is the only model that has the better performance using mobility fea-
tures only (M) than using historical crimes (C) consistently across different months, cities
and types of crimes. Finally, we can also see that the average F1 scores for HALR—the only
non-neural architecture we analyze—are lower than those for GRU, Attn and NbConv (up
to 2% lower), thus revealing that some deep learning models can in fact provide better re-
sults than simpler, non-neural models.

5.1 Measuring the effects of mobility features
To quantify the effect of using mobility features in short-term crime prediction models,
we compute the relative change in F1 score between using C+M or only M features and the
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Table 6 Average (standard deviation) of monthly F1 score using C+M for violent crime prediction

from Aug. to Dec. 2020 for each city

Bal Min Aus Chi
HALR 0.390 (0.024) 0.290 (0.056) 0.159 (0.015) 0.269 (0.023)
GRU 0.393 (0.023) 0.284 (0.054) 0.166 (0.014) 0.267 (0.021)
Attn 0.398 (0.024) 0.284 (0.055) 0.160 (0.012) 0.266 (0.019)
GCN 0.370 (0.025) 0.275(0.051) 0.149 (0.008) 0.266 (0.020)
GGConv 0.387(0.028) 0.285 (0.048) 0.152 (0.005) 0.268 (0.021)
NbConv 0.400 (0.024) 0.296(0.047) 0.159 (0.007) 0.270 (0.022)

Table 7 Relative change in F1 score using C+M for property crime prediction in Chicago in each test

month

Model Aug Sept Oct Nov Dec
HALR 3.7% 3.0% 1.4% 2.3% 2.7%
GRU 4.0% 4.3% 25% 3.9% 24%
Attn 2.9% 2.2% 2.2% 3.2% 3.7%
GCN 1.2% 1.0% 0.3% 0.1% -1.8%
GGConv 1.2% 0.3% 0.9% -0.6% 1.3%
NbConv 4.3% 4.9% 5.6% 4.2% 4.5%

Table 8 Average relative change in F1 score using C+M for property crimes over all test months
(Aug-Dec) in each city

Model Bal Min Aus Chi

HALR 6.1% 3.6% 1.6% 2.6%
GRU 5.3% 4.6% 1.3% 3.4%
Attn 5.4% 2.7% 0.5% 2.8%
GCN -0.6% -1.2% 0.4% 0.2%
GGConv 4.0% 1.4% 2.4% 0.6%
NbConv 5.8% 4.7% 2.1% 4.7%

baseline model with only C features, as described in Sect. 4.3. This analysis will measure
the effect of using only mobility features or adding mobility features to historical crime
features on model performance, when compared to the only crime data baseline. As an
example, Table 7 shows the relative change in monthly F1 score using C+M in Chicago
over each test month, from August to December in 2020. We observe that adding mobil-
ity features to the models help boost the crime prediction performance in most scenarios
(most relative changes are positive for different months and models). However, the im-
provement of the performance differs across models. We can observe that NbConv makes
the best use of mobility features, i.e., the largest relative improvement in F1 scores in all
months in Chicago; while the mobility features sometimes hurt the performance of mod-
els with a graph convolution layer: GCN and GGConv have a negative relative change in
one month.

To be able to analyze the global effect of using mobility features (either C+M or M)
across models, cities and types of crimes, we compute the average relative change over
the five test months for each model, city and type of crime and discuss main findings.
Tables 8 to 11 display the results for all combinations described. Based on these average
relative changes, we present the following observations:

1) GCN not only has the worst prediction performance but also fails to leverage mobility
features, i.e.,, the relative changes are mostly negative or small positive values in all cities
and types of crimes. In the following observations, we exclude GCN from our analysis.

Page 13 of 20
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Table 9 Average relative change in F1 score using M for property crimes over all test months
(Aug-Dec) in each city

Model Bal Min Aus Chi

HALR 3.7% 0.2% -2.9% -2.3%
GRU 1.9% 2.4% -1.6% 0.3%
Attn 4.6% 1.7% -2.9% 0.4%
GCN -2.8% -1.7% -1.5% -2.0%
GGConv 4.2% 1.8% 0.9% 0.4%
NbConv 6.0% 2.8% 1.4% 3.3%

Table 10 Average relative change in F1 score using C+M for violent crimes over all test months
(Aug-Dec) in each city

Model Bal Min Aus Chi
HALR 4.1% 2.5% 1.7% 2.8%
GRU 3.3% 1.8% 4.0% 1.3%
Attn 3.7% 4.5% 1.9% 2.1%
GCN 0.1% -0.4% -3.0% -1.4%
GGConv 1.9% 2.5% -0.1% 0.7%
NbConv 5.0% 6.6% 7.0% 2.2%
Table 11 Average relative change in F1 score using M for violent crimes over all test months
(Aug-Dec) in each city

Model Bal Min Aus Chi
HALR 0.4% -5.7% -9.2% -4.0%
GRU 2.3% -5.4% -1.3% -1.8%
Attn 1.1% -2.8% —7.7% -0.7%
GCN -1.9% -1.1% -2.1% -4.1%
GGConv 2.4% -1.4% 0.1% -0.4%
NbConv 5.2% 5.9% 8.2% 2.4%

2) Adding mobility features along with historical crimes as inputs (C+M) is consistently
beneficial to short-term crime prediction for all cities, types of crimes and models, al-
though the extent of improvement varies from 2.4% to 7% increase in F1 scores (see Ta-
bles 8 and 10). NbConv achieves the largest improvement in two cities for property crime
and in three cities for violent crimes and the second largest improvement in the rest of the
cases.

3) Replacing historical crimes input (C) with mobility features only (M) does not al-
ways provide better or comparable crime prediction performance for property crimes (i.e.,
many relative changes in Table 9 are less than 1%) and often hurts prediction performance
for violent crimes (i.e., most relative changes in Table 11 are negative). The exception is
NbConv, whose relative changes using M are consistently positive and improvements in
the F1 scores are often substantial with improvements between 1.4% and 8.2%.

To sum up, these results reveal that using mobility features as predictors of crime, to-
gether with historical crime data (C + M) or as a substitute for historical crime data (M),
provides significant improvements in F1 scores across cities and types of crime when the

NbConv model is used.

5.2 Effect of length of look-back period and length of training months
In our problem and evaluation setting we have kept two parameters fixed: the length of the
look-back period is set to 14 and the number of training months (including the validation
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Figure 5 Average F1 score in crimes prediction using NbConv across August to December 2020 with
different lengths for the look-back period. Each city has two plots: the one on the left is for property crimes
and the one on the right is for violent crimes

set) is set to 7. To investigate the effect of these two parameters on our evaluation, we
consider a battery of values for the length of the look-back and the number of training
months, retrain our best performing model —-NbConv—and compute the new F1 scores
averaged across all testing months for each of the parameter values considered, city, type
of crime and combinations of input features (C+M, M and C). To test the effect of the
look-back, we consider values ranging from 8 to 18, with the number of training months
fixed to 7. To analyze the effect of the number of months, we consider training months
varying from 3 to 7, with look-back fixed to 14. The results for Baltimore and Minneapolis
are shown in Figs. 4 and 5. The results for Austin and Chicago follow similar trends, and
thus are not shown in the paper.

We can observe that the impact of changing the length of the look-back period on
NbConv models with M and C+M input features is very small, with maximum changes in
the F1 score smaller than 1% (see the orange and green lines in the four plots of Fig. 4).
On the other hand, the NbConv model with historical crimes only as input features (C) is
slightly more impacted by changes in the length of the look-back period, with F1 scores in-
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creasing up to 1.6% as the look-back grows until it saturates around look-back= 14 (value
that we select for our analysis). These numbers reveal that the improvements in F1 scores
for C+M and M probably represent a lower-bound with potentially larger improvements if
the look-back period considered was reduced. As for the length of the training months, the
impact on F1 scores is also small. We observe maximum F1 score changes of less than 1%
and a very slight increase in the F1 score as the length of the training months increases for
all input combinations and cities, except for NbConv with input features C in Minneapo-
lis. This analysis shows that the F1 scores discussed for NbConv are stable across diverse
training lengths.

6 Discussion and limitations

Our results have shown that mobility flow features extracted from GPS data collected by
location intelligence companies can improve the performance of short-term crime pre-
diction models both for neural and non-neural (HALR) architectures. Interestingly, our
analyses have shown that non-neural architectures that use mobility data perform worse
than some neural architectures including GRU, Attn and NbConv, but better than others
(GCN and GGConv). However, the difference is small, with neural architectures produc-
ing short-term crime prediction F1 scores of up to 2% than non-neural approaches.

We have also revealed that mobility flows used together with historical crime data
(C + M) systematically provide the highest increases in F1 scores when compared to mod-
els that only use historical crime data; and that these improvements are pervasive across
neural and non-neural models, diverse cities and types of crime. Using only mobility flows
(M) as crime predictors, instead of historical crime data, also produced systematic im-
provements in F1 scores across cities and types of crime, albeit only for the NbConv neu-
ral model. The F1 score improvements when using mobility flow features—which go from
1.4% to 8.1%—could be potentially lower-bounds of the actual improvements, since our
analysis also showed that considering longer look-back periods generally improved the
F1 score values. Based on our findings, we propound that mobility features that model
flows from GPS data collected by location intelligence companies can be used to improve
short-term crime prediction models, and that the NbConv architecture seems to offer an
adequate modeling framework to maximize the improvements.

The SafeGraph mobility data that we have used is from 2020. Due to covid-19, 2020
was an abnormal year with the overall mobility heavily reduced specially during the first
months of the year [13]. Despite that flattened mobility trend, our results show that mobil-
ity features do in fact help improve the crime prediction performance. We posit that our
findings provide a lower-bound approximation of the predictive power that mobility fea-
tures extracted from location intelligence companies can have in place-based, short-term
crime prediction models. As mobility goes back to normal, or starts to increase defining a
new normal, we propound that the predictive power could be potentially higher given that
researchers have reported significant relationships between decreasing mobility trends
and transmission rates [34]. Similarly, the historical crime data statistics in 2020 were also
different than prior years, mostly due to social distancing measures and reduced mobility.
Prior work has shown that in 2020, while homicide rates were higher throughout the US
when compared to pre-pandemic statistics, robbery and larceny—which potentially re-
quires closer contact—were significantly lower [30]. Despite these anomalies in the crime
data, the results presented in this paper are valid and comparable across regions given the
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changes in crime volumes were similar across the US—including the cities under study in
this paper [5].

Predictive policing i.e., the use of predictive models to forecast crime target areas for
police intervention and crime prevention [35], comes with its own risks [37]. The historical
crime data used in crime prediction models has been shown to suffer from data bias due
to under-reporting and under-recording issues [2, 28]. Prior related work has shown that
income [15, 41, 46], unemployment rate [29], race [15, 41] or gender [44] are associated to
crime under-reporting and under-recording behaviors. For example, white and wealthy
crime victims or female-headed household victims in the US are less likely to report to
the police [41]; and the police is less likely to record into their databases minor crimes
in majority minority-race and immigrant neighborhoods in the US due to the unworthy
victim perspective [43, 44].

Moving from data to algorithms, researchers have shown that predictive models trained
on biased data might reinforce and amplify such bias [8, 28]. For example, Lum and Issac
audited PredPol, a widely used place-based predictive policing system [31], and found that
the locations predicted by the algorithm as crime hotspots were reinforcing data bias. In
fact, the authors revealed that the flagged regions were already over-represented in the his-
torical crime data: using PredPol, non-white people would be targeted at roughly 1.5 times
the rate of whites, in contrast to estimates of drug use by race, which were roughly equiv-
alent across racial classification. Similar bias reinforcement was found for low-income
groups who were disproportionately targeted at higher rates.

Beyond data and algorithmic bias arguments, scholars have also raised concerns with
respect to the unequal burdens argument i.e., innocent minorities unfairly facing the bur-
den of predictive policing and racial profiling [11]; while others have argued the opposite:
the unequal benefits objection states that those burdened are the largest beneficiaries of
crime reduction in their communities [1]. In a paradigm shift, recent work puts forward
that even if predictive policing significantly reduces crime in minority communities, it can
still be unfair and paternalistic, and proposes community-led discussions around predic-
tive policing that will keep communities involved in strategic decision making, including
the use (or not) of predictive policing tools in their own communities [37]. We would like
to finalize this section by saying that although data bias, algorithmic fairness, and more
generally the risks of predictive policing are extremely important issues that we have ex-
plored, and continue to explore in our research [49], these are not the focus of this paper.

7 Conclusions and future work

In this study, we leverage large-scale human mobility flows for short-term place-based
crime prediction implemented with deep learning. The mobility flows are computed from
data collected by a location intelligence company and reflect actual, complete population
flows between census tracts; thus improving the current state-of-the-art approach that
uses flows approximated via Foursquare consecutive visits. To robustly analyze the effect
of adding mobility features to next-day crime prediction in terms of prediction accuracy,
we conducted comprehensive experiments with a wide range of neural network archi-
tectures on cities with diverse demographic characteristics and different types of crimes.
Our paper has shown that adding human mobility flow features to historical crimes can
improve the F1 scores for a variety of neural short-term crime prediction models across
cities and types of crimes. The improvement in F1 scores varies across models. Neigh-
bor convolution architectures (NbConv) that model the spatio-temporal patterns of the
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input features simultaneously produce the best prediction accuracy when adding mobil-
ity features with relative improvements from 2% to 7%. We have also shown that using
only mobility flow features—without historical crime data—improves the F1 scores for
the NbConv model only, with improvements between 1.4% and 8.2%. Finally, our analysis
also shows that some neural architectures can slightly improve the crime prediction per-
formance when compared to regression models by at most 2%. The results discussed in
this paper present robust findings confirming that mobility flow data can improve place-
based, short-term crime prediction models across diverse geographies and types of crime;

and that those improvements can be slightly higher if deep learning approaches are used.
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