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concurrent set, a characteristic of temporal networks shown to be important in many
application areas, e.g,, in transportation, social, process, and other networks. We
propose a competition-driven model for the generation of such constrained
networks. Our method carries out turns of competitions along the timeline where
each node in a network is labeled with a probability to gain outgoing edges in
competitions. We present a thorough theoretical analysis to investigate the
cardinality and degree distributions of the generated networks. Our experimental
results demonstrate that our model simulates real-world networks well and generates
networks efficiently and at scale.
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1 Introduction

Problem. Synthetic temporal networks are widely used to understand and verify the be-
havior of real networks [9, 22]. In recent years, various models have been proposed to
generate synthetic networks satisfying certain characteristics. However, the distribution
of the concurrent set size (CSS) [25] has not been considered in previous studies. CSS dis-
tribution refers to the mapping from a timestamp in a network domain to the number
of edges active at this timestamp.! In many real-world networks, the CSS follows one or
more distributions. Consider an example shown in Fig. 1. The CSS of transport trips by
free hired vehicles [3] in New York City follows a Poisson distribution in the morning and
then a normal distribution for the rest of the day. Another example is the CSS of the raw
dataset used in BPI challenge 2014 [2], which follows a linear-transformed power-law dis-
tribution in most of the time domain. These examples show that studying the behavior
of the CSS can provide a better understanding of real-world networks. Further, modeling
of the CSS can aid in the generation of realistic synthetic temporal networks. Finally, a
deeper understanding of CSS can provide guidance towards efficient network processing
approaches [24].

1 An edge e is active at a certain timestamp t when ¢ falls in between €’s starting and ending times.
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Figure 1 The CSS distribution of some real networks. C(t) is the CSS at time t. The FHV CSS (left) can be
estimated as a Poisson distribution when t < 480 and a normal distribution in the rest. The BPI CSS (right) can
be estimated as a linear-transformed power-law distribution when t < 800

Contributions. In this paper, we directly address the generation issues in the CSS-
constrained temporal networks, particularly:
+ We propose a new model, namely a competition-driven model (CDM), to generate the
CSS-constrained networks.
« We present a theoretical analysis of the CDM and show how CDM affects several
important characteristics of generated networks.
+ We carry out an in-depth experimental study which demonstrates that CDM can

simulate the real-world networks well and that its generation process is scalable.

Organization. The rest of this paper is organized as follows. Section 2 presents related
work. Section 3 presents our proposed model. Section 4 gives a theoretical analysis of our
model and demonstrates its characteristics. Section 5 presents experiments that evalu-
ate the performance of our model. Section 6 concludes the paper with a summary of our

findings.

2 Related work
Activity-driven network (ADN) model, proposed by Perra et al. [17], is the most well-
studied network model in the state of the art. This model initializes each node v with a
firing rate a, drawn from a given probability distribution F(x). At each timestamp ¢ and
with probability a,, node v becomes active and generates m instant outgoing edges linked
to the other nodes randomly. Several studies have been carried out to extend the model in
both structural and temporal fields. For structural extensions, prior studies concentrate on
the selection of the edge destination [6, 13, 14, 21]. Alessandretti et al. [6] extend each node
with an attractiveness value representing its probability to be selected as the destination
of edges. Other works extend the model with a reinforcement mechanism, which exhibits
the preference of nodes to connect to previously contacted nodes [13, 14, 21]. Another
collection of works concentrate on the incorporation of community structure [14, 16].
Laurent et al. [14] introduce focal closure and cyclic closure, which gives rise to the com-
munity structure in the network. Nadin et al. [16] initialize each node to a community. In
each turn, a node could either connect other nodes within (or outside) the same commu-
nity with probability  (or 1 — u). For temporal extension, Sunny et al. [20] introduces the
duration for edges so that edges are lasting entities rather than instant ones.

Besides ADN, there are also other categories of temporal network generation models.
The Renewal process model extends the Gillespie algorithm [11] to model the network
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generation where each node is modeled as a Poisson process and the superposed nodes
are regarded as the inter-event time distribution [8, 15]. Holme [12] and Speidel et al. [18]
model the generation as labeling of static links with temporal aspects. Starnini et al. [19]
and Zhang et al. [23] model the generation as a process involving agents performing a
random-walk in the unit square. Each agent interacts with its neighbors every time a ran-
dom walk is performed. To deal with situations where information of entities is missing,
Cho et al. [10] proposes a self-exciting process model where the event rate between each
pair of entities is modeled as a Hawkes process.

To the best of our knowledge, there is no research on modeling and generation of CSS-
constrained networks. In the next section, we give the preliminaries and the details of our
model.

3 Model

We next present the basic definitions and state the network generation problem studied
in this paper. Then, we propose our competition-driven model which serves as a solution
to the stated problem.

3.1 Preliminaries

Temporal network. A temporal network is modeled as a graph G = (V,E, T), where V
and E are respectively the set of nodes and temporal edges in G. T is a temporal domain
of the network. Each edge e € E is represented by a tuple (u, v, t.) where (1) u,ve V
represent a directed link from node u to v, denoted (1, v); (2) £, £, is a pair of timestamps

s.t. t; < t,, representing the active lifespan of link (i, v), denoted [¢;, t,].

Activity behavior. 'We start by presenting the definition of nodes’ activity behavior. Given
anode v e Vandtime ¢ € [1, T], we say v is active at ¢ if there exists e € E such thate.u = v
and e.t; = t. Otherwise, we say v is inactive at £. Also, we define edges’ activity behavior.
Givenan edge e € Eand time ¢ € [1, T], we say e is active at t if t € [e.t;, e.t,] (or is an active
edge at ¢) and ends at time e.f, + 1. Note that multiple active edges are allowed between
the same pair of nodes at an arbitrary time ¢.

Snapshot. In order to obtain an instant status of a temporal graph, G = (V,E,T)
could also be viewed as a sequence of static graphs G = {G(1), G(2),..., G(T)}, where
G(1),G(2),...,G(T) respectively represents the instant status of G at t = 1,2,...,T. We
call G(¢) a snapshot at time ¢. Formally, given a temporal network G = (V,E,T) and a
timestamp ¢ € [1, T, the corresponding snapshot is represented as G(t) = (V, E(t)), where
E(t) = {€,¢é,...,e.} C E is the set of active edges at ¢.

CSS distribution. Given a temporal graph G = {G(1), G(2),...,G(T)}, a CSS distribution
is represented as a function C(£) = |E(¢)|, Vt € [1, T]. That is, the CSS distribution indicates
the number of active edges at each timestamp ¢.

Problem statement. We study the problem of how to generate CSS-constrained net-
works. Given a set of nodes V' and the target CSS distribution C(£), we aim to generate
a temporal network G = {G(1), G(2),...,G(T)} with node set V, where |E(¢)| = C(¢) for
Vte[l,T].
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Table 1 Overview of the important characteristics of the generated networks

Number of generated edges |E]

Relative degree A(v)

Inter-event time distribution T

Duration distribution D

CSS distribution C(t)
[b]

Table 2 Overview of the parameters used in the proposed model

Nodes set

Power value distribution
Inter-event time distribution
Duration distribution

CSS distribution

AP NS

Besides the values for C(¢) and V, we consider additional characteristics of generated
networks as the structural and temporal characteristics of real networks are heteroge-
neous. For example, inter-event time (IET) in some real networks follows a power-law
distribution with notable heavy tail [15, 18, 21]. This makes the IET distribution an impor-
tant and necessary parameter in network generation. Similar results could also be found
for the real degree of nodes [16]. We summarize the important characteristics of our gen-
erated networks in Table 1.

Relative degree. For convenience of comparison and analysis, degree of a node needs to
be stable in its distribution across networks of different sizes. For this purpose, we define a
relative degree of a node as follows. Given a temporal graph G = (V,E,T) and Vv € V, we
call A(v) = % the relative degree of v, where §(v) is the number of edges outgoing from v.
As defined, A(v) denotes the proportion of edges starting from a given node v.

Inter-event time (IET) distribution. The distribution captures the activity behavior of
nodes. Given temporal graph G = (V,E, T) and Vv € V, we collect the distinct start times

of edges outgoing from v, denoted 6(v) = {£{,¢3,...,t/} where t/ € [1,T] and ¢/ < ¢},,. For
i €[l,€), we call 7;(v) = t},; — t! an inter-event time (IET). We assume that v follows a

probability distribution Z(f, z,T), where f is a parameter distribution function, z and T
are minimum and maximal IETs respectively.

Duration distribution. The distribution captures the activity behavior of edges. Given
temporal graph G = (V,E, T) and Ve € E, we call d(e) = e.t, — e.t; + 1 the duration of edge
e. We assume that edge duration d follows a distribution D(f,d, d), where f is a parameter

distribution function, d and d are minimum and maximum edge durations, respectively.

3.2 Competition-driven model

In this work, we propose the competition-driven model (CDM) to generate the CSS-
constrained networks accurately and efficiently. Table 2 presents the input parameters
used in our model. In CDM, each node is associated with a power value I1(v) and next
active time nat(v). The former determines v’s strength in edge generation while the latter
determines its next time to be active. That is, a node with higher I1(v) has a higher chance
to become the source of newly generated edges at time nat(v). Values for I1(v) are drawn
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from a parameter probability distribution f (e.g., the power value distribution) and values
for nat(v) are drawn from the IET distribution Z.

Network generation. Using the above model, the procedure of network generation is
shown in Algorithm 1. A dedicated active-list structure named Active is maintained to
store the set of active edges in real-time. The basic idea of network generation is travers-
ing the CSS distribution C(¢) in time and adjusting the size of Active (denoted |Active|)
according to C(£) at a certain timestamp ¢. For this aim, we define the following two basic
operations to maintain Active.

« InsActive(Active, e): insert the edge e into Active; Return 1 for success and 0 for failure.

+ DelActive(Active, t): delete all edges e s.t. t > e.t, from Active; Return the collection of

deleted edges.

Algorithm 1: The network generation using CDM

Input: Nodes set V', power value distribution f, IET distribution Z, duration
distribution D, CSS distribution C(z)
Output: Synthetic temporal graph G = (V,E, T)
1 Initialize IT1(v) and nat(v) for each v € V by using f and 7
2 t < mincg,)m i, T < maxc,)4 L
3 whilet < T do
4 D <« DelActive(Active, t)
5 E<EUD
6 n < C(t) — |Active|
7 if n <0 then

8 D <« PruneActive(Active, t — 1,—n)
9 E<~EUD
10 else
1 Collect the participants set I'(¢) = {p},p5,...,p}}
12 i<1
13 while i < k do
14 | Siph) < T@ph Y, T
15 while 7 > 0 do
16 Draw a participant p from S; as source.
17 if it is the first time for p to be drawn in this turn then
18 Draw an IET 7 from 7
19 L nat(p) < t+t
20 Draw a duration d from D.
21 Draw a destination v from V — {p}
22 InsActive(Active, (p,v,t,t +d — 1))
23 n<n-1
24 t<—t+1

25 E < EU Active
26 return (V,E, T)
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Algorithm 2: PruneActive

Input: active list Active, timestamp ¢, number of pruned edges n
Output: the set of pruned edges D
1 D <« set

2 while » >0 do

3 e < the 1st edge in Active
4 D < DU {(e.u,ev,e.tg,t)}
5 Active < Active — {e}

6 n<n-1

7 return D

For ease of maintenance, edges in Active are sorted by their end-time in ascending order.
In this way, the complexity of InsActive and DelActive is logarithmic in |Active|. With the
structure, the specific operations to be carried out at any given time ¢ could be determined:
when C(¢) is smaller than |Active|, some of the existing edges should be forcibly deacti-
vated and removed from Active in order to satisfy |Active| = C(t) constraint. We define
one additional operation for Active in order to deal with this situation:

» PruneActive(Active, t, k): select k edges, set their end-time to ¢, and delete them from

Active Return the collection of deleted edges.

The procedure of PruneActive in our work is shown in Algorithm 2. Here, we apply
the end-time-first pruning strategy to prune Active. That is, we select the top-k edges
with minimal end-time from Active, reduce their end-time to ¢, and delete them from
Active. Various pruning strategies can be used in PruneActive. We choose end-time-first-
pruning for the following reasons. First, this strategy provides the best efficiency because
edges in Active are sorted by their end-time. Second, end-time-first-pruning also helps to
preserve the duration distribution in the generated network, which is a desirable network
characteristic.

Additionally, a total of n = C(t) — |Active| edges should be generated and inserted into
Active. The algorithm first collects the set of nodes I'(¢) = {p}, p5, ..., p}} with nat(v) < ¢.
We call these nodes in the collection participants at current time .2 Continuously, the al-
gorithm constructs a probability distribution S;(p) by normalizing I1(p!) for each i € [1,k].
We call S;(p) the competition distribution and it reveals the probability for each partici-
pant to “win” in each turn of the coming competition at time ¢. With the constructed S, (p),
the algorithm carries out a #-turn competition to generate new edges. In each turn, a par-
ticipant p € I'(¢) is first selected as the source of link according to S;(p). Next, a duration d
is generated from duration distribution D, and another node v is selected uniformly from
the remaining nodes as the destination In this way, a new temporal edge (p,v,t,t +d — 1)
is created and inserted into Active. And if it is the first time for p to win in this turn, al-
gorithm updates nat(p) to t + T, where 7 is drawn from Z to determine its next time to
be active. Similar turns are repeated until # turns have been carried out, which means n
new edges have all been created in this competition. Note that if p does not win any turns
in the competition, nat(p) is not updated and p would be continuously considered as a

2If there is no v € V s.t. nat(v) < t, we collect the set of nodes u such that nat(u) - t < w - (t - nat’(u)) and set each nat(u) to
t, where threshold w € (0,1.0] and nat’(u) is the last active time of u
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participant in the competition at the next timestamp. This way, p’s IET is prolonged until
it can win at least one turn in a competition.

The iterative competitions are repeatedly carried out until C(¢) is completely traversed
in time. The complexity of the generation algorithm is O(T - | V| + |E| - log |E|), where |E|
is the total number of generated edges. Note that |E| is not an input parameter to the
CDM and its exact value can only be known when the network is completely generated.
Similarly, for each node v € V, relative degree A(v) is also known after the generation
since they depend on |E|. In the following section, we present the theoretical analysis of
how values for |E| and A(v) in the produced networks are influenced by the generation
algorithm.

4 Analysis

Two natural questions about the CDM are: (1) As the number of edges |E| is not an input
parameter to the algorithm, what is the expected cardinality for the generated network?
(2) Similarly, what would the relative degree A(v) be like? Answers to these questions re-
spectively help to evaluate the necessary storage cost for generation and investigate the
structural characteristics of the generated network. In this section, we provide an anal-
ysis to answer these two questions. For ease of analysis, we make the assumption that
the activity behavior of both v € V and e € E follow the Poisson process and Z, D follow
exponential distributions with A;, A, parameters, respectively. Besides, we assume each
participant in a competition can win at least one turn so that their IETs are not prolonged
and follow T strictly.

Cardinality. Fort € [1,T],let O(t) demonstrate the number of edges that should be gen-
erated at timestamp £. The equation to describe the relation between network cardinality
|E| and O(¢) could be written down as follows:

T
E| =" 0(). (1)
t=1

Let R(t) demonstrate the number of remaining edges at time ¢ after DelActive is invoked.
The equation to describe O(t) is as follows:

o) = C(t) - R(t) C(2) > R(2), 2
0 C(t) < R(t).

That is, given timestamp ¢, O(£) merely contributes to the cardinality when C(t) > R(¢).
For example, Fig. 2 presents a collection of edges generated using the CDM and C(t) =
{0:1,...,3:1,...,5:3,6:3,7:4,8: 3}. Each edge is represented by its interval. Consider
the edge generation at ¢ = 7 is completed and we are going to generate the collection of
edges at ¢ = 8. Active at ¢ = 7 contains the edges ej, ey, e3, 4. Then DelActive deletes e,
e; from Active since they both end at ¢ = 8. In this way, only two edges es, es survive in
Active after the edge deletion, hence R(8) = 2. Since C(8) = 3 and Equation (2) gives O(8) =
C(8) — R(8) = 1, this means that a single edge needs to be generated at ¢ = 8.

As cardinality analysis is generally used for network storage and construction time esti-
mation, here we use the worst-case method to estimate the output of Equation (1). In this
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Figure 2 An example of an edge generation by the CDM. Dashed line corresponds to the C(8) = 3

worst case, we assume that R(¢) is always smaller than C(¢). Then, the worst-case equation
for the maximum number of generated edges |E|,, is described as follows:

T

|El =) _(C(£) = R()). (3)

t=1

From Algorithm 1, we know that R(¢) consists of the set of edges active at both ¢ — 1
and ¢. Then, R(¢) can be computed as follows:

R(t) = C(t-1) - (1-Py(t)), (4)

where P,(t)3 represents the probability for each e € E(t — 1) to end at time ¢. In our exam-
ple, we can estimate that P,(8) is approximately 0.5 since there is C(7) = 4 and R(8) = 2.
Here, we use the knowledge of the stochastic process to make further deduction on P,(¢).
Considering a probability event €, Poisson process uses the following equation to express
and compute the probability that € happens k times in duration [¢,t + T]:
e T (AT)k
P[N(t+1)-N(t)=k] = —a ()
Note that P4(t) can be also described as the probability that an edge active at t — 1 is going
to end at time t. Based on our assumed Poisson process for e and exponential distribution
for D, P,(t) can be transformed into the following:

Pu(t) =P[N(t) = N(t - 1) = 1] = rpe™™2. (6)

By substituting Equation (6), (4) into (3), we could obtain the following equation of de-
scribe the expected cardinality for synthetic network.

T-1

|Elw = C(T) + Y C(t) - hpe™2. @)

t=1

3Since edges share the same D in the CDM, the ending probability is the same for e € £.
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With this equation, the complexity of CDM becomes more intuitive. Also, maximal
memory cost in network generation can be evaluated.

Relative degree. Next, we give the derivation of the relative degree A(v). The equation to
describe A(v) is as follows:

~ L o t)

A(v) ]

, 8)

where o(v, t) is the number of generated outgoing edges starting from v at time ¢. The value
of o(v, t) relies on whether v is active at £. Based on our assumption and letting P,(¢) * be
the probability for v € V to be active at ¢, the equation is as follows:

P,(t) =P[N(t) -N(t - 1) =1] = Ae™. 9)
In this way, the equation to describe o(v, t) is as follows:

0 with probability p = 1 — A1e71,
o, £) = P vp ! (10)
S:(v)- O(t) with probability p = A,e7™1.

According to Algorithm 1, S;(v) could be computed as follows:
T @l
S,(v) = (H(v)/ 3 n(pf)). (11)
i=1
By substituting Equation (11) into (10), we could obtain:
0 withp=1-Ae™1,

I(v)-0(¢)
S neh
= 1

o(v,t) = (12)

with p = Aje7*1,

The combination of Equations (8) and (12) reveals that in order to analyze A(v), we only
need to concentrate on the o(v,£) in which v is active at timestamp ¢t. We use B(v) =
{b(v,1),...,b(v,k),...} to demonstrate the collection of v’s active timestamps b(v, k) rep-
resent the kth active time of v. Equation (8) could be simplified into following format:

Z}i(f)‘ o(v, b(v,k))

Al = IE|

(13)
Aligning Equations (13) with (12), we could obtain the following equation which illustrates
the factors impacting A(v):

[B)|

1 M(v) - O(b(v,k))
“IE > STGORN PR

k=1

A(v) (14)

Equation (14) reveals that the relative degree of node v is influenced by following factors:

4Since nodes share the same Z in the CDM, the active probability is the same for all v € V.
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« |B(v)|, the number of timestamps when v is active (i.e., the number of competitions v
participated). The larger |B(v)| provides more opportunities for v to earn outgoing
edges.

« |C'(#)], the number of participants in competition at time ¢. The larger |T'(¢)| tends to
weaken S;(v), which in turn leads to less outgoing edges from v.

«+ TI(v), the power value of v. The larger IT(v) tends to enhance S;(v), which in turn leads
to more outgoing edges from v.

+ O(t), the number of generated edges at time ¢. The larger O(t) leads to more outgoing
edges from v when S;(v) is fixed.

In order to mine more underlying factors on A(v), we introduce the mean-field method

to simplify the variables in the model and regard the inferred result as the benchmark. Let
A(v) be the mean static degree of node v. The equation to describe the mean field is as

follows:

B

n(v) o) 6 5 H(v)
=— (15)

where B is the mean number of competitions v participated. T is the mean number of
participant at time ¢. O is the mean number of edges that should be generated at time .

Corresponding equations to describe these mean-field parameters are as follows:

B= E[B(v)] = e ™MT, (16)
T=E[|T(®)]] =re ™V, (17)
= |E|/T. (18)

By substituting equation (16), (17), (18) into (15). The mean degree equation could be

transformed as follows:

Kle_)”l -T

I(v)
A(V) = ? . ; Z?:llefh.\v\ H(Pf?(%k)).

—_

(19)

Equation (19) reveals the two characteristics of the relative degree in our model: first, as
the number of nodes | V| increases, the relative degree of each node will drop because | V|
determines the sum of cumulative adding in denominator. Second, given the number of
nodes | V|, more involved participants make the distribution of A(v) much closer to I1(v)
as it makes th” H(pf(v'k)) closer to 1. That is, relative degree A(v) is exactly reflected by

[1(v) in the most ideal situation. The larger nodes set size makes A(v) closer to I1(v).

5 Experimental evaluation
In this section, we present our experimental investigation for the CDM. We aim to an-
swer the following questions. First, we would like to know if CDM could simulate real
networks with both structural and temporal characteristics preserved. Second, we inves-
tigate to what extent various graph configuration parameters influence the synthetic net-
works generated by the CDM.
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(o]

Table 3 Overview of the real-world networks used in the experiments. In each network, nodes
represent the locations and edges represent the vehicle trips between pairs of locations. Each edge is
associated with an interval for its period of activity

Name V| IE] T
Yellow 253 236,522 1440 minutes
FHV 261 585,691 1440 minutes
HVFHV 260 823,629 1440 minutes
Flight 335 566,942 744 hours

5.1 Setup
Environment Our experiments are carried out on a server with 192 GB RAM and 2 In-
tel(R) Xeon(R) CPU X5670 with 6 cores at 2.93 GHz running a Linux operating system.

We implemented the in-memory versions of the CDM in C++.

Datasets We consider four real networks in the transportation domain: Yellow, FHV,
HVFHYV, and Flight. In each network, nodes represent the locations and edges represent
the vehicle trips between pairs of locations. Each trip is associated with an interval for its
period of activity. Yellow [1] records the trips on the yellow taxi in New York City on 2
January 2018 and each trip is labeled with an interval to represent its duration. FHV [3]
records the trips on for hired vehicles in New York City on 1 January 2018. HVFHYV [5]
records the trips on high-volume for hired vehicles on 1 June 2019. Flight [4] records the
trips on airlines in the US in January 2019. An overview of statistics of the four networks

is given in Table 3 and their CSS distributions are shown in Fig. 3.

Yellow FHV
4000 16000
3000 12000
G 2000 8000
1000 4000
0 0
0 350 700 1050 1400 0 350 700 1050 1400
HVFHV Flight
4000
16000
3000
12000
) 2000
© 8000
4000 1000
0 \\
0 0 350 700 1050 1400 0 175 350 525 700
t t
Figure 3 CSS distribution of the real-world networks used in the experiments
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100 IET frequency configuration 100 Duration frequency configuration
[]
. Yellow .. - Yellow
T, FHV L FHV
10-2 HVFHV | 1g-2 s HVFHY
Flight Flight
N S
1074 1074
10-6 10-6 —_—
10° 10?1 102 103 10° 10! 102 103
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Figure 4 The IET and duration values used in frequency and fitted configuration. In frequency configuration
(upper left and right), statistical estimations of real measures are directly used as input schema. In fitted
configuration, IET (lower left), duration (lower right) distributions are used directly as estimated from real
networks, and the fitted result are used for Z and D distributions

Experiments We run two categories of experiments to investigate the performance of
CDM. The first category of experiments deals with the quality of network simulation by
the CDM. We investigate real networks’ relative degree, IET, duration, and CSS distri-
bution to obtain a graph configuration to be used in network generation. Specifically, we
obtain graph configurations in two ways. The first method is called the frequency configu-
ration, in which statistical estimations of real measures are directly used as input schema.
The second method is called the fitted configuration, in which for IET and duration dis-
tributions are used directly as estimated from real networks and we use the fitted result
for 7 and D distributions. We use the power-law cut-off model y = k - 7¢ - e % + h. The
values used in frequency and fitted configuration for each network are shown in Fig. 4.
The parameter k& is the CSS coefficient which represents the times that basic CSS value is
enlarged.

The second category of experiments investigates the scalability of the CDM. We use
instances with two types of CSS: (1) the linear C(¢) ~ ¢ and (2) the Gaussian C(f) ~
N(702,180.0%). The former case aims to investigate the CDM performance in mono-
tonic increasing CSS and the later case aims to investigate the CDM performance in non-
monotonic CSS. The default setup for the remainder of the configuration is shown in Ta-
ble 4. These configuration parameters are either popularly used in existing benchmark for
network modeling and generation [7] or supposed to impact the underlying structures in
networks. To investigate such impact in various networks generated by using CDM, we
vary the configuration parameters as follows. (1) We set | V| in [500, 750, 1000, 1250, 1500]
to investigate the nodes cardinality impact in CDM. By setting various |V/|, we ob-
tain the networks involving either more or less entities. (2) We set CSS coefficient k
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Table 4 The default configuration for the scalability experiments

Schema  Value Description

14 500 number of nodes

|E| 200,000,000 number of edges

f ~x1 power value distribution
T ~t712,7=1,7T=1000 IET distribution

D ~d'5 d=1,d=1000 duration distribution

k 50 x 107 coefficient in C(t)

in [1,5,50,500,5000] x 107 to investigate the CSS coefficient impact. By setting vari-
ous k, we obtain the networks with either higher or lower CSS value at each times-
tamp. (3) We set |E| in [20,40, 60, 80, 100] million to investigate the edges cardinality im-
pact.® By setting various |E|, we generate either small or large networks. (4) We set T in
[1,10,100,1000, 10,000] to investigate the IET impact. By setting various 7, the intensity of
IET heavy tail (i.e., the existence of long IETSs) in generated graph can be controlled. (5) We
set d in [1,10,100, 1000, 10,000] to investigate the duration impact. By setting various d,
the existence of lasting edges can be controlled.

We use six measures to evaluate the result: the distribution of (1) network generation
time, (2) relative degree, (3) closeness, (4) IET, (5) duration, and (6) stability [22]. Given a
node v € V, the closeness is a measure of how close v is to any other nodes in the network.
The measure is computed as the inverse of the average distance from v to any other nodes
in the network, which is shown as follows:

V-1
ZME‘,_M dist(v,u)’

closeness(v) = (20)

where dist(v, u) represents the minimal distance (i.e., number of hops) from node v to u.
The stability is a summary of v’s evolving degree structure in time, which is measured
based on the notion of degree rank. Given the set of snapshots {G(1)... G(T)}, the degree
rank of v in snapshot G(t) is computed as follows.

8:(v)

k t» = o U
ek ) = ey 8160

(21)
where §;(v) is the number of out-going edges from v in G(¢). With these notions, given the
set of snapshots {G(1)...G(T)} the stability of v is computed as follows.

stability(v,{G(1)...G(T)}) =1 -20,, (22)

where o, is the standard deviation of v’s degree rank over all snapshots. As a trade-off be-
tween measuring accuracy and efficiency, for each network in this experiment, we com-

pute the szability based on 1000 uniformly selected snapshots.

5.2 Results and analysis
Quality of network simulation. Table 5 reports the generation time for the two types
of simulations (frequency and fitted configurations) for different networks. We note that

SEvery time C(1) is consumed, we return to C(0) and continue the generation iteration, until the desired cardinality is
reached.



Zhu et al. EPJ Data Science (2021) 10:30 Page 14 of 24

Table 5 Generation time of simulation result. The number of edges in generated networks are close
to the cardinality in original real networks. The largest network with 800K edges (HVFHV-frequency)
can be generated in no more than 15 seconds

Name |E| construction cost (ms)
FHV-frequency 563,243 12,176.3
FHV-fitting 533,572 12,5747
Yellow-frequency 237,275 7859.7
Yellow-fitting 199,298 87709
HVFHV-frequency 826,523 14,980.0
HVFHV-fitting 755,707 14,714.8
Flight-frequency 569,483 10,7174
Flight-fitting 583,964 11,266.1
Yellow FHV
0.08 — real 0.03 — real
—— frequency —— frequency
0.06 —— fitting 0.02 — fitting
2
<0.04
0.01
0.02
0.00 0.00
0 50 100 150 200 0 50 100 150 200 250
HVFHV Flight
0.020 — real 0.05 — real
—— frequency —— frequency
0.015 —— fitting 0.04 —— fitting
s 0.03
< 0.010
0.02
0.005 0.01
0.000 0.00
0 50 100 150 200 250 0 70 140 210 280 350
v v
Figure 5 Relative degree of simulation result

even the largest network with around 800K edges could be constructed in less than 15
seconds. This indicates that CDM is highly efficient in network generation. Figures 5, 6,
7, 8, 9 report the measures in the real, frequency-simulation, and fitting-simulation net-
works. We note that in each subplot, the trend of different curve is similar to each other
and the differences are minimal. This indicates that CDM could simulate real networks
well.

Scalability of network generation. Next, we investigate the performance of CDM in dif-
ferent categories of networks. Table 6 reports the construction time of various networks
in CDM and following results could be drawn from it. First, by varying &, the construc-
tion time in the monotonic increases steadily. This is expected because higher k leads
to larger |Active| in each competition so that the insert of a newly generated edge be-
comes more costly. In the non-monotonic, however, the construction time in the non-
monotonic sharply decreases at the very beginning and then increases steadily. This is
because the low k in the non-monotonic significantly increases the times of invoking
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Figure 7 |ET distribution of simulation result

PruneActive, which is unproductive to the generation of new edges. Second, by varying
|V, the construction time keeps increasing. This is expected because higher |V| gen-
erally leads to more participants in a competition which further makes each turn more
costly. Third, by varying the desired |E|, the construction time steadily increases because

Page 15 of 24
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more competitions are carried out to generate larger networks. Fourth, by varying 7, the
construction time steadily decreases because long IET significantly reduces the number

of participants in a competition. Finally, by varying d, the construction time slightly in-

Page 16 of 24
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Table 6 Generation time in both monotonic (denoted t,,) and non-monotonic (denoted tp)
networks with respect to schemas (secs). In most cases, the variation of time is monotonic. The only
exception is k-varying t,, which first decreases and then increases

kx 1077 1 5 50 500 5000
tm 865.5 868.7 889.2 892.7 908.6
th 22518 10106 8336 870.7 9212
v 500 750 1000 1250 1500
tm 889.2 887.9 9086 9257 9205
th 8335 867.8 908.6 925.7 948.9
E] 200M 400M 600M 800M 1000M
tm 889.2 17354 2680.1 3573.1 4465.7
th 8335 1671.0 2539.8 3390.2 42262
T 1 10 100 1000 10,000
tm 9422 914.0 878.1 889.2 8345

th 967.0 9212 8736 8335 804.0

d 1 10 100 1000 10,000
tm 8214 8103 832.2 889.2 8814

th 804.1 819.2 801.0 8335 840.1

creases because more lasting edges increases the maintenance cost of Active. Overall,
the result demonstrates that CDM could generate both small and large networks effi-
ciently.

Next, we concentrate on the remaining structural and temporal measures. Figure 10 re-
ports the degree distribution in various networks. Several observations can be made here.
First, we note that higher | V| pulls down the degree proportion of each node, which is ex-
pected in Equation (19). Second, the higher & lifts the front of the distribution curve while
the tail still keeps stable. This is because a higher coefficient value provides more oppor-
tunities for higher-power nodes to obtain outgoing edges in each competition so that the
high-power nodes could fully take their advantage in their involved competitions. Third,
higher 7 pulls down the front and lifts the rest of the curve. This is because the appearing
of longer inactive period allows lower-power nodes to participate in more competitions
without competing with higher-power nodes. Finally, higher 4 pulls down the front part
because lasting edges lead to a limited number of edges to be generated at each timestamp.
This restricts the degree advantage of high-power nodes.

Figure 11 reports the IET distribution in various networks. The dashed line is there
to illustrate the “ends” of the lines, they cannot be seen otherwise because of the sig-
nificant overlap between the lines that correspond to different studied parameters. We
start by drawing two general conclusions about the IET results. First, the configured 7 is
well modeled in networks generated by the CDM since we can observe the heavy-tails in
power-law distribution. Second, the networks with a higher proportion of small IETs tend
to have smaller maximal IET. For convenience, we call this the IET aggregation nature in
the generated networks. Third, the maximal IET in a generated network can be larger than
configured 7. This is because nodes with lower I1(v) may never win in a competition so

their IET would be continuously prolonged.
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Figure 10 Relative degree in various networks. We note that (1) higher |V, dtends to pull down the curve;
(2) higher k tends to lifts the curve. (3) higher T tends to pull down the front and lifts the rest
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Figure 11 The IET distribution in various netvvor_ks. We note that (1) higher k tends to enhance the IETs'
aggregation one small values; and, (2) higher T, d tends to weaken the aggregation
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The rest of the results observed in Fig. 11 include the following. First, IET aggregation
of the non-monotonic networks tends to be weaker than the monotonic networks. This is
because the generation of non-monotonic networks involves the invoking of PruneActive,
which introduces the period with no competitions and extends nodes’ IETs. Second,
higher k enhances the IET aggregation because this provides more opportunities for
lower-power nodes to win in competitions. Third, higher T weakens IET aggregation as
expected. Finally, higher d also weakens the IET aggregation because lasting edges reduce
the opportunities for lower-power nodes to win in competitions.

Figure 12 reports the duration distribution in various networks. We first note that the
configured D is also modeled well because of the observed heavy-tails. Second, higher
d pulls down the durations’ aggregation on small values for the similar reason as in IET.
Besides, duration proportion in networks generated by the CDM tends to be much more
stable since they are hardly impacted by other factors (in comparison to the IET).

Finally, we present the result and analysis of node stability in various networks. A gen-
eral situation drawn from the resulted statistics is that low-power nodes are generally
more stable than higher-power nodes. This is expected because the temporal degree of
the low-power is generally small or even negligible comparing to the global maximal de-
gree. To be more specific, considering a node v € V, the global maximal temporal degree
might probably vary in v’s inactive period. Since small I1(v) generally leads to small degree,
lower-power nodes tend to be less sensitive to the variation of the global maximal degree.
Oppositely, higher TI(v) generally leads to in-negligible degree. This makes high-power
nodes much much more sensitive to the variation.

Figure 13 reports the node stability in various networks and several results could also
be drawn from it: first, the higher | V| lifts the stability curve in both monotonic and non-
monotonic networks. It is because the higher | V| leads to the lower degree distribution
so that a batch of higher-power nodes become less sensitive and more stable. Second, the
higher k lifts the stability curve in both categories because a higher CSS coefficient leads to
the increase of the maximal and a higher proportion of stable nodes. Third, higher T pulls
down the curve in both categories because nodes’ longer in-active period can intensify
the variation of the maximal. Fourth, higher d pulls down the curve in both categories
because lasting edges can increase nodes’ temporal degree and intensify the variation of
the maximal. Finally, we note that nodes in the non-monotonic are less stable than that
in the monotonic when the rest of the configuration is the same. This demonstrates that
PruneActive, which mainly considers the generation efficiency and duration distribution
in this paper, weakens the stability of nodes in generated networks. So in the future, we
would consider various methods used in PruneActive and investigate their influence on
stability.

6 Conclusion

We proposed the CDM to solve the generation problem of CSS-constrained temporal net-
works. CDM is designed to take the CSS distribution as an input, which is a vital charac-
teristic of many real networks, as guidance to generate synthetic temporal networks con-
strained by the CSS. We present theoretical analysis which shows that the cardinality and
nodes’ relative degrees of a network generated by the CDM could be predicted. Our exper-
imental results also demonstrate that CDM can simulate real networks well and generate
networks efficiently.
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Figure 12 The duration distribution in various networks. We note that higher d tends to pull down the
durations’ aggregation on small values
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Figure 13 The node stability in various networks. We note that (1) higher |V, k tend to lift the curve; and,
(2) higher 7, d tend to pull down the curve
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In future work, we plan to study various Active-pruning and destination-selecting strate-
gies and their impact on the networks generated by the CDM.

Acknowledgements
This work was partially funded by the EU H2020 project SmartDatalake (825041), the National Key Research and
Development Plan of China (2019QY1300 & 2016YFB0801601).

Abbreviations
CSS, Concurrent set size; ADN, activity-driven networks; [ET, inter-event time; CDM, competition-driven model.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the NYC-TLC repository,
https://www 1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All of the authors contributed to designing the proposed model and writing up the results. KZ implemented the model
and carried out the analyses and experiments. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 19 June 2020 Accepted: 26 May 2021 Published online: 03 June 2021

References
1. (2009) NYC Yellow Taxi. https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf.
accessed 15 June 2020
2. (2014) BPI 2014 challenge. https://www.win.tue.nl/bpi/doku.php?id=2014:challenge. accessed 15 June 2020
3. (2015) NYC free hired vehicles.
https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_fhv.pdf, accessed 15 June 2020
4. (2019) Airline on-time performance data. https://www.transtats.bts.gov/, accessed 15 June 2020
5. (2019) NYC high-volume free hired vehicles.
https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_hvfhs.pdf. accessed 15 June 2020
6. Alessandretti L, Sun K, Baronchelli A, Perra N (2017) Random walks on activity-driven networks with attractiveness.
Phys Rev E 95:052318. https://doi.org/10.1103/physreve.95.052318
7. Bagan G, Bonifati A, Ciucanu R, Fletcher GH, Lemay A, Advokaat N (2016) gmark: schema-driven generation of graphs
and queries. IEEE Trans Knowl Data Eng 29(4):856-869
8. Boguna M, Lafuerza LF, Toral R, Serrano MA (2014) Simulating non-Markovian stochastic processes. Phys Rev E
042:108. https://doi.org/10.1103/physreve.90.042108
9. Bouros P, Mamoulis N (2017) A forward scan based plane sweep algorithm for parallel interval joins. Proc VLDB
Endow 10(11):1346-1357. https://doi.org/10.14778/3137628.3137644
10. Cho YS, Galstyan A, Brantingham PJ, Tita G (2014) Latent self-exciting point process model for spatial-temporal
networks. Discrete Contin Dyn Syst 19(5):1335-1354. https://doi.org/10.3934/dcdsb.2014.19.1335
11. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical
reactions. J Comput Phys 22(4):403-434. https://doi.org/10.1016/0021-9991(76)90041-3
12. Holme P (2013) Epidemiologically optimal static networks from temporal network data. PLoS Comput Biol
9(7):21003142. https://doi.org/10.1371/journal. pcbi. 1003142
13. Kim H, Ha M, Jeong H (2015) Scaling properties in time-varying networks with memory. Eur Phys J B 88(12):315.
https://doi.org/10.1140/epjb/e2015-60662-7
14. Laurent G, Saraméki J, Karsai M (2015) From calls to communities: a model for time-varying social networks. Eur Phys J
B 88(11):301. https://doi.org/10.1140/epjb/e2015-60481-x
15. Masuda N, Rocha LE (2018) A gillespie algorithm for non-Markovian stochastic processes. SIAM Rev 60(1):95-115.
https://doi.org/10.1137/16m 1055876
16. Nadini M, Sun K, Ubaldi E, Starnini M, Rizzo A, Perra N (2018) Epidemic spreading in modular time-varying networks.
Sci Rep 8(1):2352. https://doi.org/10.1038/541598-018-20908-x
17. Perra N, Gongalves B, Pastor-Satorras R, Vespignani A (2012) Activity driven modeling of time varying networks. Sci
Rep 2:469. https://doi.org/10.1038/srep00469
18. Speidel L, Lambiotte R, Aihara K, Masuda N (2015) Steady state and mean recurrence time for random walks on
stochastic temporal networks. Phys Rev E 012:806. https://doi.org/10.1103/physreve.91.012806
19. Starnini M, Baronchelli A, Pastor-Satorras R (2013) Modeling human dynamics of face-to-face interaction networks.
Phys Rev Lett 168:701. https://doi.org/10.1103/physrevlett.110.168701
20. Sunny A, Kotnis B, Kuri J (2015) Dynamics of history-dependent epidemics in temporal networks. Phys Rev E 022:811.
https://doi.org/10.1103/physreve.92.022811
21. Ubaldi E, Vezzani A, Karsai M, Perra N, Burioni R (2017) Burstiness and tie activation strategies in time-varying social
networks. Sci Rep 46:225. https://doi.org/10.1038/srep46225
22. van Leeuwen W, Bonifati A, Fletcher GH, Yakovets N (2017) Stability notions in synthetic graph generation: a
preliminary study. In: Proceeding of the 20th international conference on extending database technology (EDBT),
Venice, Italy


https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf
https://www.win.tue.nl/bpi/doku.php?id=2014:challenge
https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_fhv.pdf
https://www.transtats.bts.gov/
https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_hvfhs.pdf
https://doi.org/10.1103/physreve.95.052318
https://doi.org/10.1103/physreve.90.042108
https://doi.org/10.14778/3137628.3137644
https://doi.org/10.3934/dcdsb.2014.19.1335
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1371/journal.pcbi.1003142
https://doi.org/10.1140/epjb/e2015-60662-7
https://doi.org/10.1140/epjb/e2015-60481-x
https://doi.org/10.1137/16m1055876
https://doi.org/10.1038/s41598-018-20908-x
https://doi.org/10.1038/srep00469
https://doi.org/10.1103/physreve.91.012806
https://doi.org/10.1103/physrevlett.110.168701
https://doi.org/10.1103/physreve.92.022811
https://doi.org/10.1038/srep46225

Zhu et al. EPJ Data Science (2021) 10:30 Page 24 of 24

23. Zhang YQ, Li X, Liang D, Cui J (2015) Characterizing bursts of aggregate pairs with individual Poissonian activity and
preferential mobility. [EEE Commun Lett 19(7):1225-1228. https://doi.org/10.1109/Icomm.2015.2437382

24. Zhu K, Fletcher G, Yakovets N (2021) Leveraging temporal and topological selectivities in temporal-clique subgraph
query processing. In: Proceedings of the 37th IEEE international conference on data engineering (ICDE). Chania,
Crete, Greece

25. Zhu K, Fletcher G, Yakovets N, Papapetrou O, Wu Y (2019) Scalable temporal clique enumeration. In: Proceedings of
the 16th international symposium on spatial and temporal databases (SSTD), Vienna, Austria

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.1109/lcomm.2015.2437382

	Competition-driven modeling of temporal networks
	Abstract
	Keywords

	Introduction
	Problem.
	Contributions.
	Organization.

	Related work
	Model
	Preliminaries
	Temporal network.
	Activity behavior.
	Snapshot.
	CSS distribution.
	Problem statement.
	Relative degree.
	Inter-event time (IET) distribution.
	Duration distribution.

	Competition-driven model
	Network generation.


	Analysis
	Cardinality.
	Relative degree.

	Experimental evaluation
	Setup
	Environment
	Datasets
	Experiments

	Results and analysis
	Quality of network simulation.
	Scalability of network generation.


	Conclusion
	Acknowledgements
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


