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Abstract
Multiple driving forces shape cities. These forces include the costs of transporting
goods and people, the types of predominant local industries, and the policies that
govern urban planning. Here, we examine how agglomeration and dispersion
change with increasing population and population density. We study the patterns in
the evolution of urban forms and analyze the differences between developed and
developing countries. We analyze agglomeration across 233 European and 258
Chinese cities using nighttime luminosity data. We find a universal inverted U-shape
curve for the agglomeration metric (Lasym index). Cities attain their maximum
agglomeration level at an intermediate density, above which dispersion increases.
Our findings may guide strategic urban planning for the timely adoption of
appropriate development policies.
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1 Introduction
Urbanization is driven by the material and social benefits that arise from the size and pop-
ulation density of cities [1–3]. The tremendous growth of cities may enable poorer coun-
tries to develop, eventually reaching the wealth of richer nations. At the same time, the
urbanization process causes congestion, environmental pollution, and regional economic
inequality. By 2050, nearly 90% of the projected 2.5 billion growth in urban population will
be concentrated in Asia and Africa [4]. This makes the sustainable growth of cities in the
developing world an issue of significant global importance. Appropriate planning policies
based on in-depth understanding of the evolution of urban forms are needed to alleviate
the negative effects of rapid growth and maximize its economic benefits. City urban form
generally refers to the spatial distribution of human activities within a city, such as places
of work and housing density. Far-reaching low-density sprawls and compact high-density
cities are two extremes of urban forms that reflect the dominant effects of dispersion and
agglomeration, respectively.

Krugman’s core-periphery model [5] and the Alonso–Mills–Muth classic monocentric
urban model [6–10] both attribute the agglomeration of firms and population to the ef-
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fects of transportation costs on goods and economies of scale. These two primary factors
theoretically explain the transition from isolated small settlements to a concentrated core
urban area (central business district, or CBD) and its periphery. Original core-periphery
models and their derivatives [11] suggest an inverted U-shaped curve for the level of dis-
persion as a function of transportation costs, where both low and high costs result in high
dispersion, but intermediate costs result in agglomeration (low dispersion). Given that
the transportation costs for goods have been dramatically declining since the 1960s [12],
an inverted U-shaped relationship would imply that dispersion should have prevailed, re-
ducing agglomeration and increasing the sprawl of cities [13]. However, in contrast to the
model predictions, many cities have developed a polycentric urban form with a dominant
CBD and sub-centres (the number of which scales sub-linearly with respect to population
size [14, 15]), suggesting that agglomeration may be prevailing. This should not come as a
complete surprise, however, because the service sector has largely replaced manufacturing
as the major industry in cities [12, 16], and transportation costs for goods are becoming
insignificant in the service economy (3% of the GDP in the 1990s compared to 8% of the
GDP in 1929) [12]. At present, it is likely that dispersion is hindered by the costs of moving
people instead of moving goods [17], because service firms attribute economic benefits to
face-to-face high-information throughput contacts [18]. Indeed, the costs of commuting
have been increasing dramatically along with increasing density (see S1 in supplementary
information (SI, Additional files 1, 2), Table 2 of [12], and panel d in Fig. 3 of [16]). In this
new context of the service economy and increasing costs of moving people, the two com-
peting forces of agglomeration and dispersion are still trying to find their balance point.

The primary purposes of this paper are to understand how agglomeration and dispersion
are manifested with increasing population and population density, to study the patterns
in the evolution of urban forms, and to analyze if such patterns differ between developed
and developing countries. If there is a universal evolution pattern for urban forms, then
appropriate and timely planning policies to alleviate some of the negative side effects of
urban growth could be developed and applied to developing economies.

2 Results
2.1 Characterising urban forms
Understanding urban forms usually involves the collection and analysis of high-resolution
socio-economic [19, 20] and telecommunication data [14], which is costly to acquire and
may be outdated. In many developing countries, such data is often coarsely aggregated,
infrequently sampled, or unavailable to the public. As an alternative, recent advances in
applications of nighttime luminosity data (NTL) provide a free and timely method for the
analysis of urban forms. Empirical studies have shown that NTL is capable of mapping lo-
cal economic activity [21–23], so the spatial distribution of luminosity across a whole city
can reveal its underlying urban form. In this study, we use NTL collected by the Defense
Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS). The data
has global coverage with a spatial resolution of 30 arc seconds (approximately 1000 meters
of earth surface) and has been released annually since 1992 [21].

The dispersion and agglomeration level of cities can be quantified by the geometric char-
acteristics of a Lorenz curve, a method widely used in economics to quantify inequality
in wealth distribution. The curve relates a cumulative share of a variable (income, wealth,
or in our case luminosity) to the cumulative share of entities that are characterized by
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this variable (individuals sorted in the order of increasing income, or geographical areas
sorted in the order of increasing luminosity). One of the characteristics derived from the
Lorenz curve shape, the Gini coefficient or index, is often used to measure the degree of
inequality of urban development [24, 25].

However, two Lorenz curves with similar Gini may describe two different types of in-
equality: one stemming from a few entities of extremely high value (curve skewed above
the reverse diagonal, see a of S2 in SI), and the other from a large number of entities with
values just above the average (curve skewed below the reverse diagonal, see b of S2 in
SI). To distinguish such situations, a complementary measure that identifies in which di-
rection the curve is skewed was proposed in [26, 27]: the Lorenz asymmetry coefficient
(Lasym). When applied to the analysis of urban forms, high Lasym (> 1) suggests that
agglomeration dominates dispersion, and low Lasym (< 1) suggests the opposite. A sym-
metric Lorenz curve (Lasym = 1) suggests that spatial human activities are lognormally
distributed. This study adopts the definition of [26], where Lasym ∈ (0, 2).

It should be noted that Gini by itself is not a measure of dispersion. Instead, it is a mea-
sure of decentralization [28], because low Gini can indicate two kinds of inequality of ur-
ban development: 1) decentralization occurs with intensive agglomeration on local level
that leads to polycentric urban forms (see panel a of S3), and 2) decentralization occurs
with weak agglomeration that leads to more generally dispersed urban forms without sig-
nificant sub-centers (see panel d of S3). We retain Gini in our analysis, since the decen-
tralization level might be of significance for wealth creation. In this study, we compute
both Gini and Lasym for 233 European and 258 Chinese cities, and validate if a universal
evolution path exists.

2.2 Urban forms observed from space
The Lorenz curve and its characteristic coefficients (Gini and Lasym) are constructed over
a specific set of entities (here, the smallest areas resolved in a satellite image – pixels with
measured luminosity) and are therefore highly affected by the definition of a city boundary.
When the boundary is large, the vast dark areas surrounding densely populated regions
are included, and both Lasym and Gini may be overestimated; when it is too small (encom-
passing only brightly lit areas), the Gini may be so low that the city is mistakenly regarded
as uniformly developed.

The boundary definition problem is common in urban science, especially in studies of
the scaling behaviour of various socio-economic indicators [2, 29]. Generally, two types
of boundaries are employed in urban studies: morphological, based on a certain threshold
in population density, and functional, based on the density considerations and economic
links (approximated by commuter fluxes) between regions unified into a single labor mar-
ket.

We tested the application of morphological boundaries (in the form of Urban Areas de-
fined by the Census Bureau in the United States) for cities with populations larger than
50 000. The Gini indices for most of these cities are close to zero, indicating uniform de-
velopment. Therefore, similar to [30], we use a functional definition of a city as a unified
labor market, comprising dense urban cores and all suburban areas that have substantial
fractions of workers commuting to them. The US, the Organisation for Economic Co-
operation and Development (OECD), and the European Union (EU) have all employed
the functional approach to define their city boundaries. However, only the EU boundaries
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Figure 1 Spatial NTL distributions, luminosity histograms, and Lorenz curves for two cities with comparable
density and Gini indices. The data reflects the boundaries defined in 2006. Panels (a), (b), and (c) are NTL
distribution, histogram of log-transformed count for luminosity distribution, and Lorenz curve for Brussels,
Belgium; panel (d), (e), (f) — Kirklees, United Kingdom

known as larger urban zones (LUZs) have more than one snapshot (2006 and 2010) in
the period when NTL data is available, so the urban forms of developed economies are
analyzed based on the EU city boundaries in this study. For developing economies, we
adopt the urban administrative units (UAUs) of China, which were defined in 2000 and
2010. Gini and Lasym indices are computed by matching NTL data and appropriate city
boundaries from the same year.

Figure 1 illustrates NTL distributions and their characteristics for two cities of similar
population density within their functional boundaries and with similar Gini indices (ad-
ditional examples can be found in S3 and S4 of SI). As evident from the luminosity maps,
both Brussels and Kirklees have developed multiple sub-centers. However, Brussels’s CBD
is much brighter than any area of Kirklees, and the fall-off in luminosity is sharper. The
Lasym for Brussels is 1.11, significantly higher than 0.90 for Kirklees, indicating Brussels’s
higher agglomeration level.

2.3 Universal evolution of urban forms
The evolution of urban forms, or changes in the balance between agglomeration and dis-
persion, can be observed through Lorenz curve indices expressed as functions of pop-
ulation density. The relatively short history of the NTL data available dictates a cross-
sectional approach, where we analyze Gini and Lasym indices for all European Union and
Chinese cities (see Fig. 2).

In agreement with [28], decentralization (decreasing Gini) invariably accompanies in-
creases in density, both in developed and developing economies. However, Gini indices
of Chinese cities are generally higher than European ones at the same level of density,
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Figure 2 Gini and Lasym indices over population density. The blue points represent Lasym, and the red
points represent Gini. The regression curve is computed using a piecewise polynomial regression model, and
the dashed line indicates the density level where peaks of the regression curve occur

which means decentralization in the EU occurs earlier than in China. This observation is
explained by the simulation model presented later in the paper (see the “Transportation
model” section).

The agglomeration level (approximated by Lasym) exhibits an inverted U-shaped pro-
file for cities in both developed and developing economies (Fig. 2). In developed countries,
the peak of agglomeration occurs at a density of 189.9 people/km2 in 2006, while in devel-
oping ones it is delayed until the much higher density level of 1025 people/km2 in 2000.
In agreement with the core-periphery models (Krugman [5] and Alonso–Mills–Muth [6–
10]), agglomeration is dominant at a certain level of transportation cost, proxied by the
population density in this study. As illustrated in the supplementary S1, the data on con-
gestion as a function of density in EU cities shows a clear positive correlation between the
two, with the median congestion level observed at a density of 240 people/km2. It is note-
worthy that this density level is approximately where the agglomeration peak measured
by Lasym occurs. Unfortunately, due to insufficient traffic data from Chinese cities, the
density of the median of transportation cost cannot be reliably estimated.

A similar inverted U-shaped relationship exists between Lasym and congestion level
(measured by Tomtom) in EU cities (see S5). Gini as a function of congestion level is rel-
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atively stable (see S5b), contrary to the decreasing Gini as a function of density (S5A).
This behaviour may partly be attributable to the differences in definition of metropoli-
tan area boundaries (Tomtom dataset is proprietary and no information on the bound-
ary is available)—for example, Dublin ranks 59th in population out of 233 EU cities but
is classified as ‘small’ city in Tomtom, while Lyon ranking 62nd is classified as ‘medium’
city.

We also explore if cities are going through the peak of their U-shaped evolution path
during the period covered in the study, i.e., between the two snapshots available in the
NTL data. We classify cities as pre- or post-peak (density lower or higher than a threshold)
based on the density at which the Lasym maximum occurs in the first snapshot (in 2006
for EU cities, and in 2000 for Chinese cities). Specifically, cities from developed and devel-
oping economies are divided as follows: 1) pre-peak cities whose densities are smaller than
189.9 people/km2 for EU cities and 1025 people/km2 for Chinese cities, and 2) post-peak
cities whose densities are larger than 189.9 people/km2 for EU cities and 1025 people/km2

for Chinese cities. Accordingly, we produce a scatter plot of differential changes in their
Gini and Lasym indices, as presented in S6. Most of the cities have decreasing Gini, which
confirms the universal trend of decentralization. However, we do not investigate whether
or not decentralization occurs along with agglomeration, which results in two distinc-
tive urban forms, polycentric and extensive sprawls. Additionally, significant fraction of
Chinese post-peak cities has decreasing Lasym indices, and pre-peak Chinese cities have
slightly increasing Lasym indices. This suggests that Chinese cities are currently going or
have recently gone through the peak of their U-shaped evolution path. On the other hand,
such a phenomenon cannot be observed in EU cities. This might be caused by the relatively
short time span between the two observations in EU cities (4 years compared to 10 years
for Chinese cities). To illustrate how cities evolve along their U-shaped path, we randomly
select ten Chinese cities from pre-peak and post-peak groups and demonstrate changes in
their Gini and Lasym indices over time in Fig. 3. In agreement with our findings, the Gini
indices of both groups have decreased between 1996 and 2010 (see Fig. 3c and d), except
for a few cities such as Tongchuan, Langfang and Shanwei. However, the Lasym indices
of pre-peak cities have shown heterogenous trends (Fig. 3a)–Lasym index of seven cities
have increased over time, staying constant or decreasing in others. Importantly, the cities
with increasing Lasym expressed a clear inverted U-shaped curve, even though the time
when peak emerged varied. For the post-peak group (Fig. 3b), the Lasym of all cities ex-
cept Guilin have constantly decreased over time. The Lasym graphs suggest most of the
cities considered have gone through their inverted U-shaped evolution paths, supporting
our findings. However, some cities have not, which requires further investigation in future
studies.

2.4 Transportation model
The common trend for agglomeration to attain its peak value at certain intermediate den-
sity (Fig. 2) is observed in cities from both developed and developing economies. How-
ever, there is a differentiation in the level of density at which agglomeration peaks occur.
The difference is likely caused by the transportation infrastructure that determines costs
of moving people. Indeed, China’s considerable investments in transportation infrastruc-
ture during the past decades have improved congestion a great deal [31]. These transport
improvements were found to efficiently reduce commuting costs [32] and allow further
agglomeration of employment in the CBD.
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Figure 3 The changes of Gini and Lasym indices over time for 20 randomly chosen Chinese cities. (a) and (c)
shows the Lasym and Gini indices of 10 randomly chosen cities whose densities are smaller than the density
at 1025 people/km2 where the peak of the inverted U-shaped curve emerged in 2010. These cities are called
the pre-peak cities. (b) and (d) shows the Lasym and Gini indices of another 10 randomly chosen cities whose
densities are larger than 1025 people/km2. These cities are called the post-peak cities. Smooth curves are
added using black dashed lines

To rationalise agglomeration trends observed empirically through night-time luminos-
ity, we employ stochastic model of a city by Louf and Barthelemy [15], developed to explain
polycentric transition that cities experience with growth. Similar to the original model, the
city is reduced to the out-of-equilibrium system with two types of agents: households and
activity centres. Activity centres are randomly distributed in space on a plane unit circle
and households are continuously added to the system cumulatively and randomly. Based
on the available choice of potential employment centres households would select partic-
ular one with a maximum utility, i.e., attainable wage less the costs of commuting. The
model qualitatively and quantitatively explains the emergence of a CBD and transition
from monocentric to polycentric urban structure as the population grows. Moreover, it
explains the process of some sub-centers eventually losing attractiveness due to the con-
gestion caused by incoming traffic.

To account for the role of infrastructure in shaping urban forms, we modify the city-
growth model by Louf & Barthelemy [15] and qualitatively explain how agglomeration is
affected by the resilience levels of transportation infrastructure. Following [15], the utility
that every additional household is maximising is determined as follows:

Zij =
[(

T(j) + 1
)βj] –

dij

l

[
1 +

(
T(j)

c

)ν+βj]
, (1)
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where Zij is the net income for a worker living at location i and choosing to work to work
at j. The first term (T(j) + 1)βj is the maximum attainable average wage paid by firms at j,
where T(j) is incoming traffic to location that is the numbers of workers choosing to work
at location j); and βj ∈ (0, 1) is the scaling factor with a gamma-distribution (k ∈ [0.5, 1],
θ ∈ [1, 2]) with mean ≈ 0.12, suggesting the wages of most sub-centers have an elasticity
of 0.12 and only a few areas of extremely high wages [30]. The second term is the trans-
portation costs: dij is the Euclidean distance between locations i and j; l is the maximum
effective commuting distance that residents can financially withstand, c is the road net-
work capacity, and ν ∈ (1.4, 1.5, . . . 1.8) is the universal infrastructure fragility level for each
city, the higher the value the worse the infrastructure the city has. The combined value of
ν + βj is the fragility level to the congestion of location j (see supplementary note 1 for
more details of the model). The citywide fragility parameter ν is effectively the sensitivity
of sub-centers to congestion-induced increases in commuting costs and associated loss in
attractiveness. It controls the capability of a city to sustain agglomeration of employment.

The simulation results are summarised in Fig. 4, with the output of the original Louf and
Barthelemy model highlighted in black (L-F model deviates from the empirical observa-
tions for Lasym index, which motivated our modifications that we detail in supplementary
note 1). In agreement with the observations in Fig. 2, decentralization occurs with grow-
ing density and inverted U-shaped curves are emerging. The lower the citywide fragility
parameter ν (the more resilient the road networks are), the later the peak in agglomera-
tion level occurs. Cities with high ν have their Lasym decreasing faster after crossing the
peak, while the rest maintain their Lasym at relatively high values. As China has invested
significantly in transportation infrastructure, we assume that Chinese cities have lower ν ,
so the simulation explains why agglomeration in Chinese cities peaks at higher densities

Figure 4 Gini and Lasym as a function of density obtained from the simulation of 1000 systems.
Supplementary note 2 discusses the implementation details of the simulation
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than in EU cities. The model also suggests that the agglomeration in China can be sus-
tained across a wider range of population density. Notably, the Gini of cities with lower ν

is significantly higher than the ones with higher ν at the same level of density.

2.5 Economic effects of agglomeration on wealth creation
The transportation model presented in this study generates inverted U-shaped curves ob-
served in the real world. The fragility of road networks ν affect decentralization levels,
the density level at which agglomeration peaks emerge, and the sustainability of agglom-
eration with increasing density. Given the differences in agglomeration levels observed in
cities from developed and developing economies, we want to test how agglomeration and
decentralization affect wealth creation while controlling for both density and geographical
divisions (eastern EU cities, western EU cities, and Chinese cities).

The linear regression model with GDP per capita as a dependent variable (see Table 1)
suggests that both density and agglomeration have a significant positive impact on wealth
creation, but decentralization does not (similar to the findings of [19, 33]). While agglom-
eration and dispersion are regarded as two ends of a continuum, density and agglomera-
tion are so important in wealth creation that policy makers in developing economies are
motivated to sustain agglomeration at the highest attainable density, which according to
our model makes investment in resilient road networks crucial.

3 Discussion
The emergence of prosperous cities outside of the developed world has allowed developing
economies to narrow the economic and social gaps, even though this fast growth poses
significant environmental [34] and social challenges [35]. Policy makers from developing
countries are learning the lessons that come along with explosive growth, when the lack of

Table 1 Ordinary least squares (OLS) test on GDP per capita for EU and Chinese cities in 2010.
Standard errors are shown in parentheses (all non-dummy location variables are mean-centered)

Dependent variable: GDP per capita in 2010

(1) (2)

log density 0.131‡ 0.121‡

(0.020) (0.023)
Eastern EU cities 1.105‡ 1.059‡

(0.076) (0.080)
Western EU cities 2.120‡ 2.049‡

(0.044) (0.057)
log Lasym (agglomeration) 0.667‡

(0.130)
log Gini (decentralization) –0.038

(0.092)
Constant –0.892‡ –0.862‡

(0.027) (0.032)

Observations 532 532
R2 0.825 0.834
Adjusted R2 0.824 0.833
Residual Std. Error 0.440 (df = 528) 0.429 (df = 526)
F Statistic 831.792‡ (df = 3; 528) 529.116‡ (df = 5; 526)

∗p < 0.1
†p < 0.05
‡p < 0.01
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understanding of evolution of urban forms can lead to extreme outcomes of failed ‘ghost
cities’ [35]. In our study we provide insight into the factors that affect morphology of cities
and govern their evolution.

We use NTL to study urban forms in both developed (European Union) and develop-
ing (China) economies and conduct spatial analysis of luminosity distributions via Gini
inequality and Lorenz asymmetry indices. Our results suggest that there is an inverted
U-shaped relationship between the agglomeration and population density. Cities attain
their maximum agglomeration level when their density reaches a certain intermediate
level. Above this level they experience increasing dispersion. Importantly, this peak ag-
glomeration density varies between different types of economies — 172.6 people/km2 for
developed European and 863.3 people/km2 for developing Chinese cities in 2010. We ar-
gue, and support this by modelling, that this is a direct result of significant investment of
Chinese cities in their public transport infrastructure that increases transportation net-
work capacity and resilience. An empirical study shows that the intensive development of
subway network plays an important role in Beijing’s urban agglomeration and new firm
formation [36]. Additional ‘last mile’ initiatives (like the dock-less bike sharing schemes)
augment the existing subway network. These combined measures eventually alleviate road
congestion and help to sustain the high-density city core [37].

The emergence of a peak in the agglomeration level, and differences in the positioning of
this peak with respect to population density in different types of economies, may suggest
that cities follow a universal path in the evolution of their urban form. Given that high
density confers demonstrable benefits of increased productivity, creativity, and wealth (as
supported by our regression model), it is important for city planners to understand the
evolutionary stage their city is experiencing. Development policies should be timely and
consider if the proposed investment will facilitate transition to, or allow maintenance of,
the optimum morphology. Conversely, aggressive land development and urbanization well
before the agglomeration peak occurs could lead to failure. Therefore, it is not surprising
that Ordos, the famous ‘ghost city’ in China which grew much faster than any contem-
porary and comparable city, is now facing long-term demographic and financial trouble.
Considerable investment in building a planned subcenter [38] when its population den-
sity was only 270 people/km2 (well below the typical peak agglomeration density value for
China) may not have been justified. It will be of vital importance to review construction
investments for cities from the developing world to understand to what extent they might
succeed and to suggest a more natural form of growth if their current development plans
allow for that.

On a practical level, the novelty of our approach is the idea that transport network re-
silience and capacity is what defines the “peak agglomeration density” (also supported by
the EU-China differences in density levels). Additional studies are needed to quantitatively
establish the link between the investment in infrastructure and sustainable/attainable den-
sity. If such quantitative relationship can be determined, it would allow urban planners to
judge whether an investment is warranted, premature, or critically needed.

Even though our study provides empirical evidence of the inverted U-shaped relation-
ship between the agglomeration and population density, we found that Gini and Lasym
coefficients were both sensitive to the fraction of zero-luminosity pixels, which generally
represent the uninhabited areas, such as water bodies. This study did not exclude NTL
data from those uninhabited areas. Therefore, a future study might benefit from using
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the normalized difference vegetation index (NDVI) of open satellite resources, such as the
SPOT-VEGERATION programme, to define the uninhabited areas of a city [39]. More-
over, Gini and Lasym both ignore the spatial features in NTL. Future studies should ex-
plore other spatial measures to better understand the U-shaped relationship between the
agglomeration and population density.

4 Materials and methods
4.1 City boundaries and census data
The two snapshots (2006 and 2010) of EU boundaries and LUZs were obtained from the
Eurostat official page: http://ec.europa.eu/eurostat/web/metropolitan-regions/overview.
The UAUs boundary of Chinese cities defined in 2010 is available from the National Fun-
damental Geographic Information System of China. As there is no boundary definition in
2000 for Chinese cities, the computations of Lasym and Gini for Chinese cities are based
on the boundary defined in 2010.

Population density and GDP per capita for EU cities are available from Eurostat
http://ec.europa.eu/eurostat/web/metropolitan-regions/data/database. The population
densities of Chinese cities are obtained from the fifth National Population Census (2000)
and the sixth National Population Census (2010). GDP per capita are collected from the
China Urban Statistical Yearbook of 2000 and 2010. GDP is further validated compared to
the provincial and municipal statistical yearbooks, respectively, and 30 cities of abnormal
GDP were excluded from this study.

4.2 Nighttime luminosity data
DMSP-OLS detects nighttime visible and near-infrared radiances and later eliminates
background noise (such as gas flares) to produce photographs of pixel values ranging
from 0 to 63 to represent city nighttime luminosity intensities. The NTL are avail-
able from the National Oceanic and Atmospheric Administration (NOAA)’s website:
https://ngdc.noaa.gov/eog/download.html. However, the satellite’s onboard sensor only
detects radiances between 10–10 and 10–8 under normal operation, so pixels of radi-
ances greater than that are clipped to the value of 63. Therefore, this study adopts the
unsaturated NTL, which is computed by combining a limited set of observations ac-
quired at low gain settings with the saturated NTL at high gain settings (available from
https://ngdc.noaa.gov/eog/dmsp/download_radcal.html).
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