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of influenza incidence from National Health Insurance Service claims database, which
consists of all medical and prescription drug-claim records for all South Korean
population. The extracted time series contains the number of new patients by region
(250 city-county-districts) and age-group (0-4, 5-19, 20-64, 65+) within a week. The
number of cases of influenza (2009-2017) is 12,282,356. For computing an onset of
influenza outbreak by region and age-group, we propose a novel method for early
outbreak detection, in which the onset of outbreak is detected as a sudden change in
the time derivative of incidence. The advantage of it over the cumulative sum and the
exponentially weighted moving average control charts, which have been widely used
for the early outbreak detection of infectious diseases, is that information on the
previous non-epidemic periods are not necessary. Then, we show that the metro area
and 5-19 age-group are earlier than the rural area and other age-groups for the start
of the influenza outbreak. Also, the metro area and 5-19 age-group peak earlier than
the rural area and other age-groups. These results would be helpful to design a
surveillance system for timely early warning of an influenza outbreak in South Korea.
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1 Introduction

For preparedness for an influenza outbreak, we have to know what intervention strategies
are effective. Therefore, there have been increasing interests for mitigation measures for
influenza. In the works of [1, 2], large scale stochastic simulation models were used for
investigating various control strategies: antiviral, vaccine and nonpharmaceutical (case
isolation, household quarantine, school or workplace closure, restrictions on travel) mea-
sures. The authors of [3] studied the effectiveness of preventive measures for pandemic in-
fluenza in Italy by using a global compartmental model and an agent-based model. Besides
reducing the infected cases and delaying the peak time, the economic impact of influenza
mitigation strategies was evaluated by a stochastic agent-based model [4]. Also, the au-
thors of [5] studied to understand how behavioral changes of individuals to intervention
strategies affect the spread of infectious disease.
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On the other hand, it can be helpful to understand the characteristics of regional and
age-group-specific spread for control policies to an influenza outbreak. There have been
several works on investigating the spatiotemporal spreading pattern of influenza in a coun-
try or regions containing a number of countries. For Japan, using Kriging analysis on
influenza-like illness (ILI) data, the authors of [6] showed that the starting areas of peak
ILI activity were mostly found in western Japan. Also, the wavelet analysis for sentinel
surveillance data was considered for studying the spatiotemporal pattern of influenza in
Japan [7]. For the U.S., using real-time syndromic surveillance systems of Massachusetts,
the authors of [8] identified target age groups within the pediatric population that develop
influenza the earliest and are most strongly linked with mortality in the population. In the
work of [9], harmonic regression models for hospitalization records of influenza in the U.S.
demonstrated that western states peaked earlier and New England states peaked later. For
Europe [10] and the Middle East, North Africa regions [11], the FluNet database was used
for investigating the spatiotemporal spreading pattern, respectively.

In South Korea, however, there has been no official statistic related to the characteris-
tics of regional and age-group-specific spread of influenza. Korean Influenza Surveillance
System (KISS) has reported the number of ILI cases per 1000 outpatients from 200 sen-
tinel clinics. It has not been divided by region and age-group but has been aggregated to-
gether. Therefore, we extract the time series of influenza incidence from National Health
Insurance Service (NHIS) claims database, which consists of all medical and prescription
drug-claim records for all South Korean population. The extracted time series contains
the number of new patients by region (250 city-county-districts) and age-group (0—4, 5-
19, 20-64, 65+) within a week. Then, the number of cases of influenza (2009-2017) is
12,282,356. Note that all of the above works [6—11] on a spatiotemporal spreading pattern
of influenza used sentinel surveillance data rather than the whole incidence data. Also, the
above works only considered the propagation of epidemic peak and the onset of outbreak
was rarely discussed. In this study, we use the whole incidence data for all South Korean
population and investigate the propagation of the onset of influenza outbreak as well as
the peak. For computing the start of an influenza outbreak by region and age-group, we
propose a novel method for early outbreak detection called time derivative (TD) method.
In the TD, the onset of outbreak is detected as a sudden change in the time derivative
of incidence. The advantage of the TD over the cumulative sum (CUSUM) [12] and the
exponentially weighted moving average (EWMA) [13] control charts, which have been
widely used for the early outbreak detection of infectious diseases, is that information on
the previous non-epidemic periods are not necessary. Then, we show that the metro area
and 5-19 age-group are earlier than the rural area and other age-groups for the start of the
influenza outbreak. Also, the metro area and 5-19 age-group peak earlier than the rural
area and other age-groups. These results would be helpful to design a surveillance system
for timely early warning of an influenza outbreak in South Korea.

The rest of this paper is organized as follows. Section 2 describes how we extract the time
series of influenza incidence from the NHIS claims database by using an episode of care.
In Sect. 3, we discuss the TD and show that it is more accurate than the CUSUM and the
EWMA for early outbreak detection of influenza. Then, in Sect. 4, we show the results on
the characteristics of regional and age-group-specific spread of influenza in South Korea.

We conclude this paper in Sect. 5.
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Figure 1 An episode of care. The medical records for influenza within 10 days from the most recent medical
record of the same person are bound to a single episode of care. Then, we choose the first medical record of
each episode of care, which is marked by a red dot, as an incidence of influenza. Here, yellow dots mean
medical records within the same episode of care

2 Data

We extract the time series of influenza incidence from the NHIS claims database, which
consists of all medical and prescription drug-claim records for all South Korean popula-
tion [14]. The NHIS claims database contains four data tables: general information of spec-
ification (20T), consultation statements (30T), diagnosis statements classified by the In-
ternational Classification of Diseases 10th revision (ICD-10; 40T) [15], and detailed state-
ments about prescriptions (60T) [16]. Using these data tables, the incidence time series is
extracted through the following two steps. First, we collect all claim records whose diag-
nosis statements include ICD-10 codes for influenza, that is, J09, J10, and J11, or whose
prescriptions contain influenza-specific drugs, that is, Oseltamivir and Zanamivir. Sec-
ond, we generate the episode of care out of the claim records collected through the first
step. The episode of care is defined as the set of services provided by a health care facil-
ity for a specific medical problem or condition or specific illness [17]. As shown in Fig. 1,
the medical records for influenza within 10 days from the most recent one of the same
person are bound to a single episode of care. Note that the 10 days is not the time in-
terval between the first and last medical records of the episode of care. Then, we choose
the first medical record of each episode of care, which is marked by a red dot in Fig. 1,
as an incidence of influenza. Here, yellow dots mean medical records within the same
episode of care. We confirm that the 10 days is sufficient to constitute the episode of care
for influenza. Due to the Act on the Protection of Personal Information Maintained by
Public Agencies of South Korea, when we export the incidence time series from the NHIS
database, the time resolution is limited by a week, not a day. As a result, we obtain the
time series of influenza incidence, which contains the number of new patients by region
(250 city-county-districts) and age-group (0—4, 5-19, 20-64, 65+) within a week. Then,
the number of cases of influenza (2009-2017) is 12,282,356.

3 Methods

In this study, we investigate the characteristics of regional and age-group-specific spread
of influenza in South Korea. Such as, in which region and in which age-group does an
influenza outbreak start and peak earlier? Finding out when the peak has occurred is
straightforward from the incidence time series. The peak week is retrospectively obtained
from the incidence time series. That is, the maximum of time series for each season is
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the peak. Therefore, this section will address how to compute the start of an influenza
outbreak by region and age-group. In South Korea, there have been currently three na-
tional influenza surveillance systems [18, 19]. First, the KISS explained in Sect. 1 reports
the number of ILI cases per 1000 outpatients from 200 sentinel clinics. Second, Korean
Influenza and Respiratory Viruses Surveillance System (KINRESS) assembles respiratory
specimens from 52 sites (as of July 2018) among the clinics participating in the KISS. The
KINRESS reports weekly positivity of influenza tests along with other respiratory viruses
including respiratory syncytial virus, parainfluenza virus, adenovirus, human rhinovirus,
human metapneumovirus, human coronavirus, and human bocavirus. Third, Hospital-
based Influenza Morbidity and Mortality (HIMM) aims to monitor not only influenza
activity but also influenza severity, such as hospitalization, complication, and mortality.
Then, Korea Centers for Disease Control and Prevention (KCDC) issues a warning for
the onset of influenza outbreak when the number of ILI cases is larger than the baseline,
which is defined as the mean number of ILI cases in non-epidemic periods of three previ-
ous influenza seasons plus two standard deviations [20]. Since the number of ILI cases is
not divided by region and age-group but is aggregated together, it is not possible to apply
the baseline of the KCDC for computing the onset of influenza outbreak by region and
age-group. The CUSUM [12] and the EWMA [13] control charts have also been widely
used for the early outbreak detection of infectious diseases. They require the mean and
standard deviation of incidence in the previous non-epidemic periods as well, and could
not be applied for computing the onset of influenza outbreak by region and age-group in
South Korea.

Then, we propose a novel method for early outbreak detection, i.e., the TD, which does
not require information on non-epidemic periods of the previous seasons. In the TD, the
start of an influenza outbreak is detected as a sudden change in the time derivative of
incidence. Figure 2(a)—(c) show the total number of new patients y, in South Korea within a
week ¢ for three influenza seasons (2013-14, 2014-15, 2015-16). In Fig. 2(d)—(f), d; and s,
represent the first derivative, d; = (y; —y;_1)/T and the second derivative s; = (d; —d;_1)/T,
respectively, where T denotes the time interval, that is, a week. For three influenza seasons
in Fig. 2, d, abruptly fluctuates around zero before the onset of influenza outbreak. The
second derivative s; also fluctuates around zero before the onset of outbreak. Then, we
smooth the fluctuation of the first derivative through a seasonal cumulative mean given
by

14
= — d/, 1
1223 t; t (1)

where ¢’ = 1 denotes the first week of influenza season. As shown in Fig. 2, the difference
between d; and u, increases at the onset of influenza outbreak. The above results are
not confirmed only for three influenza seasons in Fig. 2, but for all seven influenza sea-
sons (2009-2017) we extracted from the NHIS claims database. Therefore, similar to the
KCDC'’s warning criteria for the onset of influenza outbreak [20], we define the outbreak

start week t as the condition

dt>/Lt+k'0't (2)
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Figure 2 The time derivative of influenza incidence. Fig. 2(a)-(c) show the total number of new patients
within a week for three influenza seasons (2013-14, 2014-15, 2015-16). In Fig. 2(d)-(f), dt, s;, ¢, and o;
represent the first derivative, second derivative, seasonal cumulative mean and standard deviation,
respectively. We confirm that d; abruptly fluctuates around zero before the onset of influenza outbreak. Then,
the difference between d; and u; increases at the onset of influenza outbreak. In Fig. 2(a)-(c), the onset week
t where the condition (2) is satisfied is marked by the blue circle

is satisfied. Here, o, is a seasonal cumulative standard deviation given by

2
1 t t
Oy = t——l Z(dﬂ)z - ; dy . (3)

t'=1

In Fig. 2(d)—(f), the blue dot shows u; + k - oy, and the outbreak start week ¢ where the
condition (2) is satisfied is marked by the blue circle in Fig. 2(a)—(c). In this study, the
parameter value k is obtained through validation, which will be discussed later in this
section. The KCDC defines the period from the 36th week of each year to the 35th week
of the following year as an influenza season. Usually, the 36th week is around the end of
August. Then, to sufficiently smooth the fluctuation of d;, we set the week that includes
July 1st as the first week of an influenza season, not the 36th week.

The outbreak starts week of ith city-county-district and jth age-group for each influenza
season is computed as follows. If the condition d,” > u," + k - 0,%/ is satisfied, then the ith
city-county-district and jth age-group shows the start of influenza outbreak in week t.
Here, d;” = (y;" — y,.1"/)/ T where y," is the number of new patients in ith region and jth
age-group. i, and o," is the seasonal cumulative mean and standard deviation of d,",
respectively.

For validation of the TD, we apply it to ILI data [21] for finding the start of the influenza
outbreak of the previous seasons. Also, the CUSUM and the EWMA control charts are

applied for comparison. In the CUSUM, we compute the cumulative sum

Cy = max{0,y; — (o + K) + Ci1 }, )
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where y; is the number of new patients in week ¢ and Cy = 0. Here, u, is a target value,
i.e., the mean of ILI for non-epidemic periods and K = 8o /2 is the allowance where o is
a standard deviation of ILI for non-epidemic periods and § is an amount of shift that we
wish to detect in the unit of o. Then, there is an onset of outbreak if C; exceeds the control
limit 4o . For the CUSUM, we have two adjustable parameters § and /. In the EWMA, the
exponentially weighted moving average is defined as

ze= Ay + (1 - A)zeq, (5)
where A (0 < A < 1) is a weighting factor. If z; is larger than the control limit, i.e., po +

Lo \/)»/(2 — A){1 = (1 — 1)2t}, then there exists an onset of influenza outbreak. As the same
as the CUSUM, po and o are the mean and standard deviation of ILI for non-epidemic

periods, respectively. For the EWMA, we have two adjustable parameters A and L.

In this study, we set the epidemic periods for the previous influenza seasons according
to the results of [12]. For validation of outbreak detection methods, the authors of [12]
defined the start of influenza outbreak when the proportion of positive influenza isola-
tions among respiratory specimens is larger than 20 percent of the maximum seasonal
level. Here, we use the FluNet database [22] for respiratory specimens from 2010 to 2016
influenza seasons in South Korea. Figure 3 shows the proportions of ILI and positive in-
fluenza isolations. The red zone in Fig. 3 represents the epidemic periods for each season.
Then, as varying adjustable parameters, we calculate the outbreak start week for each sea-
son and compute the true positive rate (TPR) and the false positive rate (FPR) for measur-
ing the performance of CUSUM, EWMA, and TD. The TPR is defined as n/N where N is
the total number of weeks in the epidemic periods, and # is the number of weeks that we
found among them. The FPR is described as #'/N’ where N’ is the total number of weeks
outside the epidemic periods, and #’ is the number of weeks regarded as epidemic periods
among them. For the CUSUM, Fig. 4 shows the results of level plots for TPR and FPR. In
Fig. 4, white boxes represent the parameter values where FPR < 0.05, and the white circle
indicates the maximum of TPR among FPR < 0.05. Here, we choose the best performance
of detecting the onset of influenza outbreak as the parameter value where TPR shows the
maximum and FPR < 0.05. The results for EWMA are given in Fig. 5. Same as Fig. 4, white
boxes represent the parameter values where FPR < 0.05 and the white circle indicates the
maximum of TPR among FPR < 0.05. For the TD, Fig. 6 shows the results of TPR and FPR
as a function of the parameter k. Note that there is only one adjustable parameter k for the
TD. Here, the white circle also indicates the maximum of TPR among FPR < 0.05. Table 1
summarizes the results of the maximum TPR among FPR < 0.05. It shows that TD is more
accurate than the CUSUM and the EWMA for early outbreak detection of influenza.

4 Results

First, let us investigate the incidence time series of South Korea during seven influenza
seasons (2009-2017). In Fig. 7 the black solid line shows the number of new patients within
a week, which are extracted from the NHIS claims database. Note that the axis ranges of
Fig. 7(a) and (b) are different to improve the readability. We can see that every season,
the onset and the peak of the outbreak occur at different weeks, and the height of the peak
varies. There were the largest number of patients in the 2009-10 season and the incidence
time series clearly shows a bimodal peak except for three influenza seasons (2010-11,
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Figure 3 The proportions of ILI and positive influenza isolations. Fig. 3(@) shows the proportion of ILI patients
among outpatients. The proportion of positive influenza isolations among specimens submitted to the
reference laboratories is represented in Fig. 3(b)

Figure 4 The TPR and FPR for the CUSUM. We show the TPR and FPR as a function of § and h. Here, white
boxes represent the parameter values where FPR < 0.05, and the white circle indicates the maximum of TPR
among FPR < 0.05

2012-13, 2013-14). Since the NHIS claims database does not include information on the
type of influenza virus, we use the FluNet database to investigate which influenza viruses
were isolated in South Korea. In Fig. 7, the histogram shows the numbers of influenza
AHI1N12009, AH3, and B virus isolates. We can see that the influenza A and B virus were
detected in all seasons and the influenza A and B virus were predominant for the first and
second peak, respectively, for the cases of the bimodal peak.

Then, we compute the outbreak start week of ith city-county-district for each influenza
season by using the TD. Remind that the TD shows the best performance for detecting
the onset of the influenza outbreak when the adjustable parameter k equals to 3.2 or 3.4.
In this study, we set k = 3.2. Then, the histogram in Fig. 8 indicates the number of regions
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Figure 6 The TPR and FPR for the TD. We show the TPR and FPR as a function of k. Here, the white circle also
represents the maximum of TPR among FPR < 0.05

Table 1 The results of the maximum TPR among FPR < 0.05. The TD is more accurate than the
CUSUM and the EWMA for early outbreak detection of influenza

FPR TPR
™D 0.004 0.819
CUsum 0.046 0.596
EWMA 0.046 0.778

where the influenza outbreak has started in that week and the black solid line shows the
number of new patients. Here, we divide the 250 city-county-districts into two groups.
One is a metro area, which includes the capital region and each metropolitan city, and the
other regions are bound to a rural area. To investigate which region the influenza outbreak
starts earlier, we calculate the median of outbreak start weeks for each season, i.e., M. In
Fig. 9(a), the city-county-districts where the outbreak start week is earlier than or equals
to M for all seven influenza seasons are marked in red. For comparison, in Fig. 9(b), we

Page 8 of 14
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Figure 7 The time series of influenza incidence in South Korea (2009-2016). The black solid line shows the
number of new patients within a week, which are extracted from the NHIS claims database. The histogram
represents the numbers of influenza AHTN12009, AH3, and B virus isolates
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Figure 8 The histogram of the outbreak start weeks. The histogram shows the number of
city-county-districts where the influenza outbreak has started in that week. As the same as Fig. 6, the black
solid line represents the number of new patients

show the metro and rural areas depicted in gray and white, respectively. Although there
are some rural regions among those marked in red, the results of Fig. 9 show that the metro
area is earlier than the rural area for the start of the influenza outbreak.

For investigating which region the influenza peaks earlier, we compute the influenza
peak week of ith city-county-district for each season. Note that the peak week is not cal-
culated by the TD, and is obtained straightforwardly from the incidence time series in

a retrospective manner. In Fig. 10 the histogram shows the number of regions that have

Page 9 of 14
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Figure 10 The histogram of the influenza peak weeks. The histogram represents the number of regions that
have the influenza peak in that week. The black solid line represents the number of new patients

the influenza peak in that week. As the same as Fig. 8, we divide the 250 city-county-
districts into the metro and rural areas and the black solid line shows the number of new
patients. Then, we compute the median of influenza peak weeks for each season, i.e., M,,.
In Fig. 11(a), the city-county-districts where the influenza peak week is earlier than or
equals to M, for all seven influenza seasons are marked in red. Similar to the start of the
influenza outbreak, the results of Fig. 11 tell us that the metro area peaks earlier than the
rural area.

So far, we have investigated which region influenza starts and peaks earlier. Now, let
us consider the incidence time series by age-group. Figure 12 shows the incidence rate
of each age-group during seven influenza seasons (2009-2017). Note that, for improving
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Figure 12 The incidence rate of influenza for each age-group in South Korea (2009-2016). We show the
incidence rate of influenza, that is, the number of new patients within a week divided by the total number of
population for that age-group

the readability, we plot the incidence rate rather than the number of new patients by age-
group. To investigate which age-group influenza starts earlier, we calculate the outbreak
start week by the TD. The peak week for each group is straightforwardly counted from
the incidence time series. The results are given in Tables 2 and 3. Except for the 2011-12
season when the height of the second peak of 5-19 age-group in the bimodal peak was
higher than that of the first peak, the 5-19 age-group starts and peaks earlier than the

other age-group.
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Son et al. EPJ Data Science (2020) 9:28 Page 12 of 14

Table 2 The influenza start weeks for each age-group. Here, we record Wednesday of that week.
Except for the 2011-12 season, the 5-19 age-group starts earlier than the other age-group

2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015-16

0-4 2009-08-12  2010-11-24  2011-12-14  2013-01-09  2013-12-18  2014-12-24  2015-12-16
5-19 2009-08-12  2010-11-24 2011-12-21 2013-01-09  2013-12-11 2014-12-10  2015-12-16
20-64  2009-08-12  2010-12-08 2011-12-28  2013-01-09  2013-12-25  2014-12-24  2015-12-23
65+ 2009-09-30  2010-12-15 2011-12-28  2013-01-09  2013-12-25  2014-12-24  2015-12-23

1 1
1 1
1 1
1 1

Table 3 The influenza peak weeks for each age-group. Here, we record Wednesday of that week.
Except for the 2011-12 season when the height of the second peak of 5-19 age-group in the
bimodal peak was higher than that of the first peak, the 5-19 age-group peaks earlier than the other

age-group
2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015-16
0-4 2009-11-11 2010-12-29 2012-02-08 2013-02-27 2014-02-19 2015-02-18 2016-02-10
5-19 2009-10-28 2010-12-22 2012-03-28 2013-02-20 2014-02-12 2015-02-11 2016-02-03
20-64  2009-11-11 2010-12-29 2012-02-15 2013-02-20 2014-02-19 2015-02-18 2016-02-10
1

65+ 2009-11-04  2011-01-05  2012-02-15  2013-02-27  2014-02-19  2015-02-18  2016-02-17

5 Discussions

For control policies to an influenza outbreak, it can be helpful to understand the char-
acteristics of regional and age-group-specific spread. However, in South Korea, there has
been no official statistic related to it. Therefore, in this study, we have extracted the time
series of influenza incidence, i.e., the number of new patients by region (250 city-county-
districts) and age-group (0—4, 5-19, 20-64, 65+) within a week from the NHIS claims
database, which consists of all medical and prescription drug-claim records for all South
Korean population. The number of cases of influenza (2009-2017) is 12,282,356. Note
that previous studies on the spatiotemporal spreading pattern of influenza used sentinel
surveillance data rather than the whole incidence data, and only considered the propaga-
tion of epidemic peak rather than the onset of an outbreak. Unlike these previous studies,
we have used the whole incidence data for all South Korean population and investigated
the propagation of the onset of an influenza outbreak as well as the peak. For computing
the start of an influenza outbreak by region and age-group, we have proposed the TD. The
TD does not require information on the previous non-epidemics periods and detect the
onset of an outbreak as a sudden change in the time derivative of incidence. The results on
TPR and FPR confirm that the TD is more accurate than the CUSUM and the EWMA for
early outbreak detection of influenza. Then, we have shown that the metro area and 5-19
age-group are earlier than the rural area and other age-groups for the start of the influenza
outbreak. Also, the metro area and 5-19 age-group peak earlier than the rural area and
other age-groups. As of July 2020, during the COVID-19 pandemic, it seems appropriate
to mention the following. The results of [8] and our study shows that children start and
peak earlier than other age-groups for the outbreak of influenza. However, as of July 2020,
COVID-19 seems to be uncommon in children [23, 24]. Since the COVID-19 pandemic is
still in progress, the results may change in the future, but influenza and COVID-19 have
shown different aspects of the prevalence of children.

So far, the early warning for influenza outbreak by region and age-group has not been
available in national influenza surveillance systems of South Korea. But, due to the TD,
the early warning by region and age-group can be possible. Also, when we need to operate
influenza surveillance systems with limited resources, we can focus on specific regions and
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age-group, which is earlier than others for the start of influenza outbreak. The NHIS claims
database we used requires at least six months of processing time to utilize them after the
occurrence of medical and prescription drug-claim records. Therefore, it is not possible
to operate a real-time early warning system for influenza outbreak using the NHIS claims
database. However, by applying the TD for real-time data, such as the drug utilization
review of Health Insurance Review and Assessment service of South Korea or National
Emergency Department Information System of South Korea, real-time early warnings can
be possible. Then, our results would be helpful to design a surveillance system for timely
early warning of an influenza outbreak in South Korea.
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