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Abstract
Complex systems, represented as dynamic networks, comprise of components that
influence each other via direct and/or indirect interactions. Recent research has
shown the importance of using Higher-Order Networks (HONs) for modeling and
analyzing such complex systems, as the typical Markovian assumption in developing
the First Order Network (FON) can be limiting. This higher-order network
representation not only creates a more accurate representation of the underlying
complex system, but also leads to more accurate network analysis. In this paper, we
first present a scalable and accurate model, BuildHON+, for higher-order network
representation of data derived from a complex system with various orders of
dependencies. Then, we show that this higher-order network representation
modeled by BuildHON+ is significantly more accurate in identifying anomalies than
FON, demonstrating a need for the higher-order network representation and
modeling of complex systems for deriving meaningful conclusions.

Keywords: Higher-order network; Dynamic network; Anomaly detection; Sequential
data

1 Introduction
Networks are a popular way of representing rich and sparse interactions among the com-
ponents of a complex system. It is, thus, critical for the network to truly represent the in-
herent phenomena in the complex system to avoid incorrect conclusions. Conventionally,
edges in networks represent the pairwise interactions of the nodes, assuming the naive
Markovian property for node interactions, resulting in the first-order network represen-
tation (FON). However, the key question is—is this accurately representing the underlying
phenomena in the complex systems? And if the network is not accurately representing the
inherent dependencies in the complex system, can we trust the analysis and results stem-
ming from this network? The Markovian assumption for network modeling of complex
system can be limiting for network analysis tasks, including community detection [3, 4],
node ranking [5], and dynamic processes [6] in time-varying complex systems.

Recent research has brought to fore challenges with the FON view, especially its limita-
tions on capturing the sequential patterns or higher- and variable-order of dependencies
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in a complex system and its impact on resulting network analysis. This has led to the devel-
opment of network representation models that capture such higher-order dependencies,
going beyond the traditional pairwise Markovian network representation [1, 2].

Our prior work [2] tackles the limitations stemming from the Markovian assumption
for node interactions (as in FON), and proposes BuildHON for extracting higher-order
dependencies from sequential data to build the Higher-Order Network (HON) represen-
tation. BuildHON, although accurate, faced the challenge of computational complexity
as well as parameter dependency. In this work, we address these limitations by proposing
a scalable and parameter-free algorithm, BuildHON+, for accurate extraction of higher-
order dependencies from sequential data. Given BuildHON+, we are also interested in
downstream network analysis tasks, adn we focus on the following question in this paper
that has not been addressed in prior HON work: Does incorporating higher-order depen-
dencies improve the performance of existing network-based methods for detecting anoma-
lous signals in the sequential data?

To answer the above question, we define anomalies (or change points) as deviations from
the norm or expected behavior of a complex system. We note that the anomalies could also
be important change points in the behavior of the complex system. The key here is to be
able to accurately flag such deviations or events in a complex system. While there exists
a wide range of anomaly detection methods on dynamic networks [7, 8], all of them use
the first-order network (FON) to represent the underlying raw data (such as clickstreams,
taxi movements, or event sequences), which can lose important higher-order informa-
tion [2, 3]. As FON is an oversimplification of higher-order dynamics, we hypothesize
that anomaly detection algorithms that rely on FONs will miss important changes in the
network, thus leaving anomalies undetected. We systematically demonstrate why exist-
ing network-based anomaly detection methods can leave certain signals undetected, and
propose a higher-order network anomaly detection framework. Consider the following
example.

Example Fig. 1 illustrates the challenge of detecting certain types of anomalies, using a
minimal example of web clickstreams data (sequences of web page views produced by
users) collected by a local media company. Given the web clickstreams as the input to
network-based anomaly detection methods, conventionally, a web traffic network is built
for each time window (two one-hour windows illustrated here), with the nodes represent-
ing web pages and the edges representing total traffic between web pages. A change in the
network topology indicates an anomaly in web traffic patterns. According to the original
clickstreams, in the first hour, all users coming from the soccer web page to the weather
page proceed to the ticket page, and all users coming from the skating page to the weather
page go to TV schedules. But the flow of users is completely flipped in the next hour, possi-
bly the weather forecast has updated with much colder weather which is in favor of winter
activities. However, despite the significant changes in user web viewing patterns, the pair-
wise traffic between web pages in this example remains the same, thus the FON topology
shows no changes. Therefore, no matter what network-based anomaly detection method
is used, if the method relies on FON, the company will not be able to detect such type of
anomalies, thus failing to respond (e.g., caching pages for visits, or targeted promotion of
pages) to the changes in user behaviors.

Contributions. We make three main contributions in the paper.
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Figure 1 Higher-order anomalies cannot be
detected by network-based anomaly detection
methods if FON is used

• We develop a scalable and parameter-free algorithm for higher-order network
representation, BuildHON+, building on our prior work [2]. We demonstrate the
efficiency of BuildHON+ through comprehensive complexity and performance
analysis on the global ship movement data, which is known to exhibit dependencies
beyond the fifth order.

• We showcase the performance of BuildHON+ in the task of network-based anomaly
detection on a real-world taxi trajectory data. We explain why the parameter
dependency in our prior work can be limiting for efficient network construction and
as a result, anomaly detection.

• Using a large-scale synthetic taxi movement data with 11 billion taxi movements, we
show how multiple existing anomaly detection methods that depend on FON
collectively fail to capture anomalous navigation behaviors beyond first-order, and
how BuildHON+ can solve the problem.

2 Related work
Higher-order networks. Recent research has highlighted the limitations of the conven-
tional network model for representing the sequential and indirect dependencies between
the components of complex systems. Multi-layer higher-order models [9, 10], motif and
clique-based higher-order models [4, 11, 12], and non-Markovian higher-order models
[2, 3, 6] try to embed complex patterns that are stemming from the raw data into the
network representation. Specifically, non-Markovian network models has gained a lot of
attraction in many applications including social networks [13, 14], human transportation
networks [2, 3, 6, 15], trade networks [16, 17], and citation networks [3]. Several research
studies show how incorporating higher-order dependencies affects various network anal-
ysis tasks, including community detection [3, 4], node ranking [5], and dynamic processes
[6] in the network. However, from current research studies, it is unclear what is the effect
of using a higher-order network model on detecting anomalies in dynamic networks.

Anomaly detection in dynamic networks. Unlike the task of detecting anomalous nodes
and edges in a single static network (such as [18]), anomaly detection in dynamic networks
[7, 19] uses multiple snapshots of networks to represent the interactions of interest (such
as interacting molecules [20], elements in frames of videos [21], flow of invasive species
[22], etc.), then identifies the time when the network topology shows significant changes,
using network distance metrics [23–25], probability methods [26], subgraph methods like
[27] and more. There are many advantages of using network-based methods for the task
of anomaly detection in sequential data. Aside from the availability of several different
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networks, a graph structure represents the relational nature of the data, which is essential
for addressing the anomaly detection problem [7]. Furthermore, the inter-dependencies
of the raw data can be captured more efficiently with graph representation. This feature
can be further enhanced in the higher-order representation of the network, as done in
this work. The importance of higher-order patterns in different network analysis tasks has
gained a lot of attention recently [1, 28]. However, one of the major challenges is that the
graph search space is very large, requiring the anomaly detection methods to be scalable
and efficient for large data sets [7].

Moreover, using snapshots of networks may cause the fine-grained time-stamps to be
lost. Therefore, the optimal time-stamp is often data-dependent and should be identified
empirically through sufficient experiments.

Nevertheless, existing methods on anomaly detection rely on conventional FON; as we
will show, certain types of anomalies cannot be detected with any network-based anomaly
detection methods if FON is used. Rather than proposing another approach to identify
the anomalous network from a series of networks, our innovation lies in the network con-
struction step, which ensures anomalous signals are preserved in the network in the first
place.

3 Methods
We first present a scalable and parameter-free approach for constructing HON, namely
BuildHON+. We then show how this new approach enables more accurate anomaly de-
tection (compared to using FON) by incorporating several different network distance
measures. Our previous algorithm, BuildHON required two parameters that had to be
specified experimentally, depending on the data set. Furthermore, it uses an exhaustive
search for extracting the dependency rules and constructing the network, which becomes
impractical for various network analysis tasks, including anomaly detection. It needs two
parameters in addition to the detection threshold: a MaxOrder parameter which governs
how many orders of dependencies the algorithm will consider in HON, and a MinSupport
parameter that discards infrequent observations. These limitations mitigate its applica-
bility to Big Data.

3.1 BuildHON+: building HON from big data
Here we introduce BuildHON+, a parameter-free algorithm that constructs HON from
big data sets.BuildHON+ is a practical approach that preserves higher-order signals in the
network representation step (Si → Gi) which is essential for anomaly detection. The dif-
ference between BuildHON and BuildHON+ is similar to the difference between prun-
ing and early stopping in decision trees. BuildHON first builds a HON of all orders from
first-order to MaxOrder and then selects branches showing significant higher-order de-
pendencies. BuildHON+ reduces the search space beforehand by checking in each step if
increasing the order may produce significant dependencies. Furthermore,BuildHON can
only discover dependencies up to MaxOrder. BuildHON+ however, finds the appropriate
dependency order hidden in the raw data and is not limited by MaxOrder. Therefore, the
output network resulting fromBuildHON+ is a more reliable and accurate representation
of the raw data, which is essential for the task of anomaly detection.

The core of BuildHON is the dependency rule extraction step, which answers whether
higher-order dependencies exist in the raw sequential data, and how high the orders are.
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Figure 2 Comparison of the active observation construction in BuildHON (left) and the lazy observation
construction in BuildHON+ (right, with a much smaller search space). Circled numbers represent the order
of execution

The dependency rules extracted are then converted to higher-order nodes and edges as
the building blocks of HON. Rather than deriving a fixed order of dependency for the
whole network, the method allows for variable orders of dependencies for more compact
representation. Figure 2 illustrates the dependency rule extraction step. BuildHON first
counts the observed n-grams in the raw data (step 1©), then compute probability distri-
butions for the next steps given the current and previous steps (step 2©). Finally test if
knowing one more previous step significantly changes the distribution for the next step—
if so, higher-order dependency exists for the path (step 4©); this procedure (“rule growing”)
is iterated recursively until a pre-defined MaxOrder (shown here MaxOrder = 3). In this
example, the probability distribution of the next steps from C changes significantly if the
previous step (coming to C from A or B) is known (step 4©), but knowing more previous
steps (coming to C from E → A or D → B) does not make a difference (step 5©); therefore,
paths C|A → D and C|A → E demonstrate second-order dependencies.

Formally, the “rule growing” process works as follows: for each path (n-gram) S =
[St–k , St–(k–1), . . . , St] of order k, starting from the first-order k = 1, assume k is the true
order of dependency, which S has the distribution D for the next step. Then extend S
to Sext = [St–(k+1), St–k , St–(k–1), . . . , St] by adding one more previous step; Sext has order
kext = k + 1 and distribution Dext. Next, test if Dext is significantly different than that of
D using Kullback–Leibler divergence [29] as DKL(Dext||D), and compare with a dynamic
threshold δ—if the divergence is larger than δ, order k + 1 is assumed instead of k for the
path Sext. The dynamic threshold δ is defined as δ = kext

log2(1+SupportSext ) , so that lower orders
are preferred than higher-orders, unless higher-order paths have sufficient support (num-
ber of observations). The whole process is iterated recursively until MaxOrder.
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3.1.1 Eliminating all parameters
The reason for having the MaxOrder and MinSupport parameters in BuildHON is to
set a hard stop for the rule growing process, otherwise, it will iterate indefinitely and keep
extending S . However, we show that we can pre-determine if extendingS will not produce
significantly different distributions, which forms an important basis for BuildHON+.

Lemma 1 The significance threshold δ = kext
log2(1+SupportSext ) increases monotonically in rule

growing when expanding S to Sext.

Proof On the numerator, the order kext of the extended sequence Sext increases mono-
tonically with the inclusion of more previous steps. Meanwhile, every observations
of [St–(k+1), St–k , . . . , St–1, St] in the raw data can find a corresponding observation of
[St–k , . . . , St–1, St], but not the other way around. Therefore, the support of Sext,
SupportSext ≤ SupportS of the lower order k = kext – 1. As a result, the denominator de-
creases monotonically with the rule growing process. �

Given the next step distribution D = [P1, P2, . . . , PN ] of sequence S , we can derive an
upper-bound of possible divergence:

max
(
DKL

(
Dext ‖ D

))

= max

(∑

i∈D

Pext(i) × log2
Pext(i)
P(i)

)

≤ 1 × log2
1

min(P(i))
+ 0 + 0 + · · ·

= – log2
(
min

(
P(i)

))
(1)

The equal sign (maximum possible divergence) is taken iff the least likely option for
the next step P(i) in S becomes the most likely option Pext(i) = 1 in Sext, and all other
options have P = 0. Therefore, we can test if – log2(min(PDistr(i))) < δ holds during the
rule growing process; if it holds, then further increasing the order (adding more previous
steps) will not produce significantly different distributions, so we can stop the rule growing
process and take the last known k (which passed the actual divergence test, not the order
which passes the maximum divergence test) as the true order of dependency. Note that,
the dynamic threshold is chosen heuristically in its current form. This threshold meets our
design requirements: (1) enforce higher support for higher-orders, and (2) fast to compute,
as it is a frequently used module in the innermost loop.

Furthermore, BuildHON+ no longer requires a MinSupport parameter. Recall that us-
ing MinSupport > 1 in BuildHON helps reduce the search space as a crude form of early
stopping, with the risk of losing valid higher-order patterns. In BuildHON+, the dynamic
threshold takes care of early stopping without requiring any extra parameter (MinSup-
port) to limit the search space. This parameter is left in the algorithm only for backward
compatibility and is set to 1 by default, but does not serve any initial seeding purpose. In
other words, MinSupport is not used in BuildHON+.

An advantage of this proposed parameter-free approach is that rather than terminating
the rule growing process prematurely by the MaxOrder threshold, the algorithm can now
extract arbitrarily orders of dependency.
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3.1.2 Scalability for higher-orders
BuildHON builds all observations and distributions up to MaxOrder ahead of the rule
growing process (Fig. 2 left). This procedure becomes prohibitively expensive for big data
with high orders of dependencies: to extract sparse tenth order dependencies, BuildHON
needs to enumerate n-grams from first-order to tenth order and compare probability dis-
tributions, which already exceeds a personal computer’s capacity using a typical real-world
data set (see Sect. 4).
BuildHON+, on the other hand, uses a lazy construction of observations and distribu-

tions that has a much smaller search space, and can easily scale to arbitrarily high order of
dependency. Specifically, BuildHON+ does not require the counting of the occurrences
of n-grams or calculating the distribution of the next steps, until the rule growing step
explicitly asks for such information.

Example BuildHON+ first builds all first-order observations and distributions (Fig. 2
right step 1©– 3©). Given that A → C, B → C, D → B, E → A all have single deterministic
options for the next step with P = 1, according to – log2(min(PDistr(i))) = 0 < δ, Build-
HON+ knows no higher-order dependencies can possibly exist by extending these bigrams
(step 4©). Only the two paths C → D and C → E will be extended; since the corresponding
second-order observations and distributions are not known yet, BuildHON+ selectively
derives the necessary information from the raw data (Fig. 2 right step 5©– 7©), and finds
that the second-order distributions show significant changes. At this point, both C|A → D
and C|B → E have single deterministic options for the next step, so again, BuildHON+
determines no dependencies beyond second-order can exist (step 8©), so the rule growing
procedure stops, without the need for further generation and comparison of distributions.

The challenge is how to count the n-gram of interest on demand—seemingly every on-
demand construction requires a traversal of the raw sequential data with the complexity
of Θ(L). However, given the following knowledge:

Lemma 2 All observations of the sequence [St–k–1, St–k , . . . , St–1, St] can be found exactly at
the current and one preceding locations of all observations of sequence [St–k , . . . , St–1, St] in
the raw data.

Proof Instead of traversing the raw data, we use an indexing cache to store the locations
of known observations, then use that to narrow down higher-order n-gram look-ups. As
illustrated in Fig. 2, if we cache the locations of C → D and C → E in the raw sequential
data, then C|A → D and C|B → E can be found at the same locations.

During the rule growing process, if Sext has not been observed, recursively check if the
lower-order observation is in the indexing cache, and use those cached indexes to perform
a fast lookup in the raw data. New observations from Sext are then added to the indexing
cache. This procedure guarantees the identification of observations of the previously un-
seen Sext, and the lookup time for each observation is Θ(1) when the indexing cache is
implemented with hash tables. �

Complexity analysis. We formally analyze and compare the computational complexity
of BuildHON and BuildHON+.
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BuildHON. Suppose the size of raw sequential data is L, and there are Di distinct n-
grams of order of i. All first-order observations (bigrams) take Θ(2D2) space, second order
observations (trigrams) take Θ(3D3) space, and so on; building observations and distribu-
tions up to kth order takes Θ(2D2 + 3D3 + · · · + kDk) storage, with k being the maximum
order allowed, because BuildHON always keeps raising order until k is reached, while
keeping all the breadth-first search results for lower orders. with D3 ≥ D2, D4 ≥ D3, re-
sulting in a complexity of Θ(k2D2).

If N is the number of unique entities in the raw data, then the time complexity of the
algorithm is Θ(Nk2D2). All observations will be traversed at least once, and evaluating if
adding a previous step significantly changes the probability distribution of the next step
takes up to Θ(N) time (assuming Kullback–Leibler divergence [29] is used).
BuildHON+. Assume there are Ri distinct n-grams that are exactly of order i. By defini-

tion, we have Ri ≤ Di. Therefore,BuildHON+’s space complexity is Θ(2R2 +3R3 + · · ·+ tRt)
(including observations, distributions, and the indexing cache) where Rk is the exact num-
ber of higher-order dependency rules for order k. Note that, Rk ≤ L, but it is not necessarily
R(i+1) ≥ R(i). Also t ≤ k.

In practice, what makes BuildHON+ different from BuildHON is its sensitivity to the
underlying data. If the dataset contains very few non-significant n-grams up to maximum
specified order, the space complexity of BuildHON+ would not be very different from
BuildHON. However, for very noisy data (Di � Ri) or data with an actual order much
smaller than the specified maximum order (t 	 k), the space complexity of BuildHON+
would be significantly smaller than BuildHON. The same applies to time complexity:
while BuildHON has Θ(Nk2D2), BuildHON+ has Θ(N(2R1 + 3R2 + · · · )). A side-by-side
comparison between BuildHON and BuildHON+ in running time and memory con-
sumption on a real-world data set is provided in Sect. 4.

3.2 Higher-order anomaly detection
Definition. The procedure of a network-based anomaly detection method takes the se-
quential data, S = [S1, S2, . . . , ST ] which is divided into T time windows t ∈ [1, T] as the
input. In each time window, the sequential data is represented as a network, i.e., Si → Gi,
yielding a dynamic network G = [G1, G2, . . . , GT ] composed of the sequence of networks.
The dynamic network G is then used to find the change point(s) t ∈ [1, T] when Gt is sig-
nificantly different from Gt–1. The difference between networks in neighboring time inter-
vals, i.e., dt = D(Gt–1, Gt), can be quantified by network distance metrics D (e.g., [23–25]).
Then the problem of anomaly detection in networks reduces to anomaly detection in the
time series of [d2, d3, . . . , dT ]. Next, to determine if the network difference dt is significantly
high, straightforwardly, if dt is larger than a fixed threshold �, Gt is anomalously different
than Gt–1. Another more robust way is to establish the norm of network differences by
computing the running average and standard deviation of network differences in the last
k time intervals, the null hypothesis being dt not significantly large; if dt deviates from the
running average by two standard deviations, the null hypothesis is rejected and time t is
considered a change point.

Existing network-based anomaly detection methods mostly differ at the network dis-
tance calculation step. However, for the Si → Gi step, i.e., where raw sequential data is
represented as networks, existing methods all use FON as G to represent the underlying
sequential data S, by counting the occurrences of pairs (bigrams) as edge weights in the
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Figure 3 Comparing anomaly detection on taxi trajectories based on the first-order dynamic network and
the higher-order dynamic network

network. Here, we propose to use the higher-order network (HON) that selectively em-
beds n-grams for the Si → Gi step. HON, using BuildHON+, keeps all structures of FON,
and when higher-order dependencies exist in the raw sequential data, it splits a node into
multiple nodes representing previous steps. We show that certain types of anomalies will
remain undetected for all existing network-based anomaly detection methods using FON,
but can be revealed by using HON.

Example Fig. 3 illustrates a side-by-side comparison of FON and HON in the network
representation step. Suppose there are four taxi trajectories in the raw data. In time win-
dow I, taxis in location c randomly navigate to d or e, regardless if the taxis came to location
c from a or b. In this time window, HON is identical to FON and there are no higher-order
dependencies. In time window II, the traffic patterns are randomly shuffled, and the pair-
wise traffic between pages a, b, c, d, e remains the same as time window I. Neither FON
nor HON shows changes.

In time window III, second-order patterns emerge: all taxis that had navigated from a to
c go to d, and all taxis from b to c go to e. Since the aggregated traffic from c to d and e
remains the same, the FON remains exactly the same, missing this newly emerged pattern.
In contrast, HON uses additional higher-order nodes and edges to capture higher-order
dependencies: node c is now splitted into a new node c|a (representing c given the last step
being a) and node c|b (representing c given the last step being b). The path a → c → d now
becomes a → c|a → d; the edge c → e rewired similarly. Therefore, the emergence of the
second-order pattern in the raw data is reflected by the non-trivial changes in the topology
of HON. If we use the weight distance [23] defined as

D(G, H) = |EG ∪ EH |–1
∑

u,v∈V

|wG(u, v) – wH (u, v)|
max{wG(u, v), wH (u, v)} (2)

with w being the edge weights and |E| being the total number of edges, due to the complete
changes in four out of the nine edges on HON, the network distance D(G2, G3) = 0.44 >
0, successfully captures this higher-order anomaly (a significant change in higher-order
navigation patterns).
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In time window IV, the second-order navigation pattern changes: all taxis that navigated
from location a to c now visit e instead of d, and all from b to c now visit d instead of
e. Since the pairwise traffic from c to d and e remains the same, FON remains the same.
However, HON captures the changes with two edge rewirings: now c|a → e and c|b → d,
resulting in D(G3, G4) = 0.22 > 0.

In brief, FON is an oversimplification of sequential data produced by complex systems,
and conventional network-based anomaly detection methods that use FON may fail to
capture the emergence and changes of higher-order navigation patterns. If HON is used
instead, without changes to distance metrics, existing methods can capture these previ-
ously ignored anomalies.

3.2.1 Distance metrics
After successful construction of HON (usingBuildHON+) we apply five network distance
measures to detect anomalies.

1. Weight distance. This metric was introduced earlier (Equation (2)).
2. Maximum common subgraph (MCS). The MCS distance is defined similarly to the

weight distance in Equation (2) but operates on MCS [23]:

D(G, H) = |EG ∩ EH |–1
∑

u,v∈V

|wG(u, v) – wH (u, v)|
max{wG(u, v), wH (u, v)} (3)

3. Modality. This distance function can be defined as follows [24]:

D(G, H) =
∥
∥π (G) – π (H)

∥
∥ (4)

where π (G) and π (H) are the Perron vectors of graphs G and H , respectively.
4. Entropy graph distance. This can be defined as follows [25]:

D(G, H) = E(G) – E(H) (5)

where E(∗) is the entropy measure of the edges:

E(∗) =
∑

e∈E∗
W̃ e

∗ –
∑

e∈E∗
ln W̃ e

∗ (6)

and:

W̃ e
∗ =

W e∗∑
e∈E∗ W e∗

(7)

is the normalized weight for edge e.
5. Finally, we also use the spectral distance, which is defined as [25]:

D(G, H) =

√√√
√

∑k
i=1(λi – μi)2

min(
∑k

i=1 λ2
i ,

∑k
i=1 μ2

i )
(8)

where λi and μi represent the eigenvalues of the Laplacian matrix for graph G and
G, respectively.
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Figure 4 BuildHON is highly sensitive to the size of the data. For the maximum data size, BuildHON takes
4.5 times longer than BuildHON+ to run (a), and requires approximately 7.2 times more memory than
BuildHON+ (b) . We set MaxOrder = 15 for BuildHON

Note that, in order to calculate network distance in HON, all higher-order nodes are
treated as first-order ones. That is, a change from D|B, C → E to D|B, C, A → E results
in total removal of D|B, C and new addition of node D|B, C, A. The reason is that in
many cases, anomalous patterns result in a change of higher-order patterns. It is desirable
that the anomaly detection method detects the “emergence”, “change” and “dissipation” of
higher-order patterns. We leave the task of classifying different higher-order anomalies
for future work.

4 Results
In this section, we first compare BuildHON+ with BuildHON in terms of running time
and memory consumption on real-world data of various sizes and multiple orders of de-
pendency. Next, we present the anomaly detection results.

For the anomaly detection experiments, we first construct a large-scale synthetic taxi
movement data with 11 billion movements and variable orders of dependencies, and show
that five existing anomaly detection methods based on FON collectively fail to capture
anomalous navigation behaviors beyond first-order, while using our framework, all meth-
ods show significant improvements.

We also demonstrate HON on real-world taxi trajectory data, showing its ability in cap-
turing the higher-order anomaly signals and revealing the exact location of anomalies.

4.1 Scalability analysis: performance improvement of BuildHON+ over
BuildHON

To highlight the scalability advantage of BuildHON+, instead of the taxi data or the syn-
thetic data (which demonstrates up to third order of dependency), we use the same ship-
ping trajectories data as used in the HON paper [2]. This data was shown to demonstrate
dependencies of more than the fifth-order due to ships’ cyclic movement patterns. It con-
sists of up to three years of shipping data (between May 1st, 1997 and April 30th, 2003),
aggregated over 3-months intervals. The smallest and largest data contains 372,500 and
4,721,936 voyages, respectively.

For a fair comparison, we use the Python implementation for both BuildHON+ and
BuildHON. Both implementations run single-threaded on the same Linux machine (Intel
Quad 16-core @ 2.10 GHz, 128 GB RAM). BuildHON+ is parameter-free (no limit to the
maximum order, optional MinSupport = 1) and does not require further configuration.
We set MinSupport = 1 and MaxOrder = 15 for BuildHON. We start with the first 3-
months of the data and aggregate the trajectories over the next 6 months, 9 months, and
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Figure 5 Given the same data [2], BuildHON+
extracts up to 11th order in 1/3 run-time and 1/5
memory of BuildHON. We set MaxOrder = 11 for
BuildHON

so on. Figure 4 illustrate the time and memory usage of both algorithms as the size of the
data increases. We observe that BuildHON is highly sensitive to the size of the data. For
the maximum data size, BuildHON requires approximately 7.2 times more memory than
BuildHON+ and takes 4.5 times longer to run.

We further analyze the run time and memory usage of both algorithms on the same
shipping dataset to analyze the effect of setting different values for MaxOrder. For this
experiment, we use one year of data which consists of 3,415,577 voyages between May 1st,
2012 and April 30th, 2013.

We set MinSupport = 1 forBuildHON, and gradually increase MaxOrder from the first-
order. Same as above, BuildHON+ does not require further configuration. BuildHON+
was able to find up to 11th order within 2 minutes, with a peak memory usage less than
5 GB, as the reference lines displayed in Fig. 5. In comparison, BuildHON already ex-
ceeds the running time and memory consumption of BuildHON+ at 6th order, reaches
the physical memory limit at 8th order, and would need about 22 GB memory and 6 min-
utes (3× time and 5× memory than BuildHON+) to achieve the same results as Build-
HON+ can. Both implementations run single-threaded on the same laptop (Intel i7-6600U
@ 2.60 GHz, 16 GB RAM, SSD).

4.2 Anomaly detection: large-scale synthetic taxi movements
We first use the synthetic data with known higher-order anomalies to test the effectiveness
of the HON-based anomaly detection framework. With synthetic data, we know exactly
when, where, and what types of anomalies exist. To begin with, we assume 100,000 taxis
are navigating through a 10 × 10 grid with cells numbered from 00 to 99. At each times-
tamp, every taxi moves 100 steps, resulting in 10,000,000 movements.

Our goal is to synthesize input sequences with variable orders of taxi navigating pat-
terns. We start from the basic case where all taxis navigate randomly, then gradually add
or change first-order and higher-order navigation rules, and see if the proposed method
can successfully identify these anomalies.

For each of the following 11 cases, we maintain the taxi navigation behavior for 100
time windows. In total, we generate 11,000,000,000 taxi movements for the subsequent
anomaly detection task. The full process to synthesize the input trajectories is illustrated
in Fig. 6.

Initial random movement case. At t = [0, 99], each taxi has a 50% chance of navigating
to the cell on the right and 50% chance of navigating down in each move.
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Figure 6 Synthetic taxi movement data: variable orders of navigation patterns on 100 cells as a 10× 10 grid

Emergence of the first-order dependency. At t = [100, 199], we impose the following first-
order rule of movement: all taxis coming to cell 00, 03 and 06 will have a 90% chance of
moving to the right and 10% chance of moving down in the next step. This new rule incurs
a significant change of first-order traffic at t = 100 between pairs of cells 00–01, 00–10, 03–
04, 03–13, 06–07 and 06–16. The locations of these dependency rules are highlighted on
the right of Fig. 6.

Change of the first-order dependency. At t = [200, 299], we change the existing first-order
movement rules: all taxis coming to cell 00, 03 and 06 will now have a 90% chance of
moving down in the next step, and a 10% chance of moving right. This change at t = 200
should also be reflected in both FON and HON.

Emergence of second-order dependency. At t = [300, 399], we keep the previous first-
order rules and impose a new second-order rule: all taxis coming from cell 27 to 28 will
have a 90% chance of moving to the right in the next step, and a 10% chance of moving
down. This change at t = 300 not only introduces new higher-order dependencies, but also
slightly influences first-order traffic (traffic of 27 → 28 → 29/38 changes from 1:1 to 7:3).

Emergence of complementary second-order dependencies. At t = [400, 499], we impose a
pair of new second-order rules: (1) all taxis coming from cell 30 to 31 (and 34 to 35) will
have a 90% chance of moving to the right in the next step, and a 10% chance of moving
down; (2) all taxis coming from page 21 to 31 (and 25 to 35) will have a 90% chance of
moving down, and a 10% chance of moving right. The combined effect of these two new
complementary second-order dependencies at t = 400 is that the first-order taxi traffic
from cell 31 and 35 remains unchanged.

Change of complementary second-order dependencies. At t = [500, 599], we flip the rules
for the complementary second-order dependencies: (1) all taxis coming from cell 30 to 31
(and 34 to 35) will have a 90% chance of moving down, and a 10% chance of moving right;
(2) all taxis coming from page 21 to 31 (and 25 to 35) will have a 90% chance of moving
right, and a 10% chance of moving down. At t = 500 the first-order taxi traffic from cell 31
and 35 still remains unchanged.

Emergence of third-order dependency. At t = [600, 699], we impose a new third-order
rule: all taxis coming from cell 61 through 71 to 81 will have a 90% chance of moving to
the right in the next step, and a 10% chance of moving down. This introduction of third-
order dependencies at t = 600 also slightly influences the first-order traffic (from 1:1 to
3:2).

Emergence of complementary third-order dependencies. At t = [700, 799], we impose a
pair of new third-order rules: (1) all taxis coming from cell 64 through 74 to 84 (and 67
through 77 to 87) will have a 90% chance of moving to the right in the next step, and a 10%
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Figure 7 Methods that use FON collectively fail to capture anomalous navigation behaviors beyond
first-order no matter what distance metric is used, but all show signals when HON is used instead

chance of moving down; (2) all taxis coming from 73 through 74 to 84 (and 76 through 77
to 87) will have a 90% chance of moving down, and a 10% chance of moving right. Here
at t = 700 first-order traffic does not change when these two complementary third-order
dependencies are introduced together.

Change of complementary third-order dependencies. At t = [800, 899], we flip the rules
for the complementary third-order dependencies. First-order traffic at t = 800 again re-
mains unchanged.

Emergence of complementary mixed-order dependency. At t = [900, 999], we impose a
new third-order rule and a first-order rule: (1) all taxis coming from cell 39 through 49 to 59
will have a 90% chance of moving to the right in the next step, and a 10% chance of moving
down; (2) all taxis at cell 59 will have 11/30 chance of moving right and 19/30 chance of
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Figure 8 (a) Labeling of police stations in urban areas of Porto. (b) and (c) the emergence of higher-order
traffic patterns in week 43 and 44 (“Burning of the Ribbons” festival) captured by HON, corresponding to the
highlighted region in (a)

moving down. At t = 900 first-order traffic does not change, because the influence of the
new third-order rule on pairwise traffic is canceled by the new first-order rule.

Change of complementary mixed-order dependency. At t = [1000, 1099], we flip the rules
for the mixed-order dependencies. First-order traffic at t = 1000 remains unchanged.

4.2.1 Results
For all five distance metrics, we present a side-by-side comparison between anomaly de-
tection results using FON and HON in Fig. 7. The Y-axis shows the graph distances be-
tween neighboring time windows; given that we have injected 10 anomalous movement
patterns at t = [100, 200, . . . , 1000], we should expect to see 10 “spikes” in graph distances.

Methods using FON can detect at most 4 out of the 10 anomalies: the addition and
changes in first-order movement patterns (t = 100, t = 200), the addition of second-order
(t = 300), and the addition of third-order (t = 600) movement patterns. Because the latter
two cases also slightly change the first-order traffic, FON does reflects the changes, but
the spikes incurred are not as significant as when changes are made directly to first-order
rules. For the other six cases, all five distance metrics appear as if there are no anomalies,
as long as they rely on FON topology.

In contrast, methods using HON (1) capture all first-order anomalies (t = 100, t = 200);
(2) show stronger signals for the addition of second-order and third-order rules (t = 300,
t = 600) because not only the first-order traffic is changed butBuildHON+ also creates ad-
ditional higher-order nodes and edges for higher-order dependencies; (3) capture the six
additional cases where higher-order movement patterns are changed but first-order traf-
fic remains the same. Here the topological changes of HON are best reflected with weight
distance and spectrum distance (detecting 10/10 anomalies); MCS weight method misses
the addition of higher-order nodes and edges (t = 400, 700, 900) because those topological
changes are excluded from common subgraphs; entropy method misses changes in edge
weights (t = 200, 500, 800, 1000), also because by definition a swap in edge weights do not
change a graph’s entropy. Nevertheless, all these distance metrics are able to identify more
types of anomalous signals simply by using HON instead of FON, with no changes to these
distance metrics. In other words,BuildHON+ can be plugged into existing network-based
anomaly detection methods directly, and extend their ability in detecting higher-order
anomalies.
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Figure 9 Variation of number of first-order, second-order and third-order nodes in HON of the taxi data of
Porto. The anomalous traffic patterns result in a significant change in the number of second and third-order
nodes, but not the first-order nodes

4.3 Anomaly detection: real world taxi data
We use the ECML/PKDD 2015 challenge data,a which contains one year (Jul. 1, 2013 to
Jun. 30, 2014) of all the 442 taxi GPS trajectories in Porto, Portugal. The coordinates of
each taxi were collected every 15 seconds. To discretize the geolocation data into points
of interest that are representative of population density, we map all coordinates to the
nearest 41 police stations (Fig. 8). As a pre-processing step and to void introduction of
bias / noise, we removed the taxis that have been idle for more than 5 days because that
can arise due to data collection errors (on average 5.29% of the trajectories were removed).
The highlighted box in Fig. 8 indicates the detection of anomalies. Figure 9 shows the
week to week difference in higher-order dependencies, yielding in 52 time windows and
442 trajectories of points of interest. We consider both FON and BuildHON+with a fixed
maximum order of 2 and BuildHON+ with a variable higher-order (discovered to be 3 by
the algorithm). We show that BuildHON+when allowed to discover the maximum order,
results in the highest indication of potential anomalies.

Note that the choice of time-window is quite data-dependent. We initially attempted
daily time-windows but noticed that the weekly fluctuation patterns (weekday commute
traffic vs weekend recreational traffic) dominate any other signals. Besides, daily time win-
dows have sparser observations, resulting in a very sparse network for each time step. On
the other hand, because anomalous traffic patterns usually last for no more than a few days,
using monthly aggregation will dilute the signal and result in too coarse a granularity.

4.3.1 Graph distance analysis
We compare the 52 networks for FON, MaxOrder of 2 as a constraint forBuildHON+ (in-
dicated as HON-2), and no MaxOrder constraint on BuildHON+ (indicated as HON+) in
Fig. 10. Our goal is to see the improvements afforded by allowingBuildHON+ to automat-
ically discover the requisite higher-order for a given data, versus specifying the maximum
order of 2 usingBuildHON and the FON representation. We compute the graph distances
(using weight distance) for neighboring time windows. The histograms of graph distances
for each network is shown in Fig. 10 (a), (b), and (c). We also compute the running av-
erage and standard deviation using the graph distances in the previous 10 weeks, with
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Figure 10 The anomalous traffic patterns are more noticeable in HON+ (c), while they are not as significant
in HON-2 (b) and FON (a). Anomaly detection results on the dynamic network of FON (d), HON-2 (e), and
HON+ (f). Correct anomalies are marked as red and false anomalies are marked as orange

the null hypothesis as “the network is not significantly different if the graph distance does
not deviate more than 2σ from the mean”. Variation of graph distances for FON, HON-2
and HON+ is shown in Fig. 10 (d), (e), and (f ) respectively. While the trend of HON+ re-
sembles that of HON-2 and FON, the graph distances in weeks 43 and 44 are particularly
more significant in HON+ than HON-2 and FON (HON-2 offers more significance over
FON as well). Such differences are also indicated in the histograms of graph distances in
Fig. 10 (a), (b), and (c), where the red circles highlight the correct anomalous signals, which
is observable in HON+, while it is not as significant in FON and even HON-2.

We focus on the case of week 43 and 44 to understand why HON+ produces a stronger
signal than HON-2 and FON in this time window. We notice that Porto’s second most
important festival, “Burning of the Ribbons”, lasts from May 2 to May 9 in 2014 and falls
within the end of week 43 and the entire week 44 of our study. The festival involves pa-
rades, road closures, and is popular among tourists, which could be the underlying reason
for the changes in taxis’ movement patterns. After plotting the traffic HON+ of week 43
and week 44 in Fig. 8 (b) and (c), we notice that multiple higher-order nodes and edges
emerge in these weeks, indicating the emergence of higher-order traffic patterns. The
newly emerged higher-order patterns correspond to police stations labeled from 9 to 14,
which is where the event’s main venue (Queimódromo in the City Park) and participating
universities are located.b We further compared the fluctuations in the number of higher-
order nodes (obtained from HON+) in Fig. 9. We notice that the number of first-order
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nodes does not change significantly, while the number of second and third-order nodes
shows a sharp change in week 44 of the data. FON (although showing deviation from aver-
age at week 44) does not capture the change in additional higher-order nodes, and HON-2
does not capture the change in third-order nodes. HON+ is more effective in decipher-
ing the anomalous signal. This analysis shows the importance of including variable and
higher-order dependencies for anomaly detection, and the applicability of BuildHON+
in discovering the appropriate orders given the data. Depending on the data, the Max-
Order value required for accurate detection of anomalies can be different. BuildHON+
removes this dependency, ensuring accurate detection of changes in the network.

4.4 Robustness to noise
We notice that FON graph distance in week 43 and 44 falls slightly outside the 2σ threshold
as well. However, HON+ deviation from the 2σ threshold is 3.25 times bigger that of FON
in week 44 and 5.2 times bigger in week 43. This becomes important in the presence of
noise where anomalies by FON may not be detected. Furthermore, based on FON graph
distances, weeks 24, 26, 41, and 42 are also anomalous events (Table 1 and Fig. 10 (d)).
However, no significant event happened during these weeks. Thus, without any noise,
FON can detect anomaly but with a higher false positive rate (4), while HON+ can also
correctly detect the anomalies but with only 1 false positive for week 24, with a very small
value above the 2σ threshold, as indicated in Fig. 10 (f ) and Table 1.

To illustrate the above point, we designed an experiment to show the robustness of
HON+ and FON against noise. We randomly assigned 10% of all taxis to the next closest
police station and constructed the corresponding HON+ and FON. The graph distances
for FON and HON+ after adding the noise is shown in Fig. 11 (a) and Fig. 11 (b), respec-
tively. The detected anomalies are presented in Table 1 where the values represent the dif-
ference between the graph distance and the 2σ threshold. Before adding the noise, FON
detects the anomalies at week 44 and week 43 with a small margin from the 2σ threshold.
Furthermore, it has a higher false positive rate (Fig. 10 (d)). After adding the noise, FON
shows false positives in weeks 17, 18, 26, 41, 42 and one correct anomaly at week 44 which
is very close to the 2σ threshold (Fig. 11 (a) and Table 1). Furthermore, FON does not

Table 1 Represents all the data points in which the graph distance (using FON and HON+) falls
outside the 2σ threshold. The column “value” indicates the difference between the graph distance
(obtained from FON or HON+) and the closest 2σ threshold (with respect to the moving average). TP
refers to true positive values (correct anomalies), which are marked as bold. FP refers to false positive
values. HON+ correctly detects anomalies, results in much lower false positives, and is more robust in
presence of noise

FON before noise FON after noise HON+ before noise HON+ after noise

Week Value Week Value Week Value Week Value

24 0.008 17 0.006 24 0.0001 41 0.003
26 0.003 18 0.008 43 0.052 43 0.044
41 0.009 26 0.002 44 0.026 44 0.025
42 0.002 41 0.020 – – – –
43 0.010 42 0.004 – – – –
44 0.008 44 0.003 – – – –

TP;FP 2;4 1;5 2;1 2;1

Precision 0.333 0.167 0.667 0.667

Recall 1 0.5 1 1
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Figure 11 After addition of the noise, FON can no longer detect the true anomaly signal in week 43, and
detects the anomaly in week 44 with a graph distance that is very close to the 2σ threshold. Furthermore,
FON shows false positives in week 17, 18, 26, 41, 42 (a). HON+ detects the anomaly in week 43 and 44 with
one false positive after addtion of the noice (b). Correct anomalies are marked as red and false anomalies are
marked as orange

detect anything in week 43. HON+, on the other hand, detected the anomalous event (in
both weeks 43 and 44) before the noise (Fig. 10 (f )) and after the noise (Fig. 11 (b)) with
only one false positive (Table 1). It is important to note that false positives can be very
costly and often require manual correction by human labor.

5 Conclusion
This paper presented a scalable and parameter-free algorithm for extracting higher-order
dependencies from the sequential data, and demonstrates the success of higher-order net-
work modeling for anomaly detection in dynamic networks. We show that BuildHON+
is scalable and parameter-free and automates the process of discovering the appropriate
variable and higher-order dependencies for each of the nodes in a network. The complex-
ity analysis of BuildHON+, as well as running time and memory consumption bench-
marking results, demonstrates the scalability of BuildHON+ to large-scale networks.

We further demonstrate that FONs are weak detectors of higher-order anomalies, espe-
cially in the noisy data. This emerges because FONs do not adequately capture the sequen-
tial orders or indirect pathways in a complex system, thereby providing a limiting view of
the behavior of a complex system in their network representation. BuildHON+ can accu-
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rately capture such anomalies and also work seamlessly with existing anomaly detection
methods to enable more accurate detection of anomalies in comparison to using FON.

The higher-order network representation results in a more accurate representation of
the underlying trends and patterns in the behavior of a complex system and is the correct
way of constructing the network to not miss any important dependencies or signals. This
is especially relevant when the data is noisy and has sequential dependencies within indi-
rect pathways. This has numerous applications, ranging from information flow to human
interaction activity on a website to transportation to invasive species management to drug
and human tracking.

We note that changes in the HON structure can be more complex than changes in the
FON structure, such as the emergence and dissipation of higher-order patterns. In order to
use the graph distances that are defined for FONs, our current approach treats any changes
in the node orders as total removal/addition of that node. This approach may result in
more fluctuations in the graph distance and can cause HONs to become less overlapping
over time. Regardless, measures defined for FONs can still be used for anomaly detection
in HONs, since the 2σ criteria captures the HON fluctuations. One possible improvement
can be designing a distance measure for capturing the unique fluctuations in the HON
structure.

Another direction for future work is to classify different types of anomalies given dif-
ferent types of node changes in HON, like the emergence and dissipation of higher-order
patterns. In addition to the graph distance metrics, one may also consider structure-based
metrics [7] that factor in changes of clustering or ranking results and local properties such
as motifs on the network. This could be considered as a supervised learning problem,
where different categories of anomalies are labeled as classes in the training data and the
task is to predict whether those categories of anomalies appear in the testing data. All of
these extensions are directly compatible with BuildHON+, as the resulting HON repre-
sentation does not impose a change in the network analysis method.

Supplementary materials are available as Additional file 1.
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