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Abstract
Modeling human behavioral data is challenging due to its scale, sparseness (few
observations per individual), heterogeneity (differently behaving individuals), and
class imbalance (few observations of the outcome of interest). An additional
challenge is learning an interpretable model that not only accurately predicts
outcomes, but also identifies important factors associated with a given behavior. To
address these challenges, we describe a statistical approach to modeling behavioral
data called the structured sum-of-squares decomposition (S3D). The algorithm, which
is inspired by decision trees, selects important features that collectively explain the
variation of the outcome, quantifies correlations between the features, and bins the
subspace of important features into smaller, more homogeneous blocks that
correspond to similarly-behaving subgroups within the population. This partitioned
subspace allows us to predict and analyze the behavior of the outcome variable both
statistically and visually, giving a medium to examine the effect of various features
and to create explainable predictions. We apply S3D to learn models of online activity
from large-scale data collected from diverse sites, such as Stack Exchange, Khan
Academy, Twitter, Duolingo, and Digg. We show that S3D creates parsimonious
models that can predict outcomes in the held-out data at levels comparable to
state-of-the-art approaches, but in addition, produces interpretable models that
provide insights into behaviors. This is important for informing strategies aimed at
changing behavior, designing social systems, but also for explaining predictions, a
critical step towards minimizing algorithmic bias.

Keywords: Computational social science; Empirical studies; Online social networks;
Human behavior; Feature selection

1 Introduction
Explanation and prediction are complementary goals of computational social science [1].
The former focuses on identifying factors that explain human behavior, for example, by
using regression to estimate parameters of theoretically-motivated models from data. In-
sights gleaned from such interpretable models have been used to inform the design of
social platforms [2] and intervention strategies that steer human behavior in a desired di-
rection [3]. In recent years, prediction has become the de-facto standard for evaluating
learned models of social data [4]. This trend, partly driven by the dramatic growth of be-
havioral data and the success of machine learning algorithms, such as decision trees and

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1140/epjds/s13688-019-0201-0
http://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-019-0201-0&domain=pdf
http://orcid.org/0000-0002-5071-0575
mailto:lerman@isi.edu


Fennell et al. EPJ Data Science            (2019) 8:23 Page 2 of 27

support vector machines, emphasizes ability to accurately predict unseen cases (out-of-
sample or held out data) over learning interpretable models [5, 6].

Explainability, however, has become an important aspect of computational modeling.
Increasingly, applications of machine learning in commercial, educational, and even ju-
dicial settings (e.g., [7]) are subject to regulation and to scrutiny for adverse effects such
as biases and discrimination. For example, the US Equal Credit Opportunity Act requires
creditors to provide an explanation to an applicant when their models recommend reject-
ing the applicant for credit, and such explanations require model interpretability. Mean-
while, controversy around discrimination in algorithmic decisions (e.g., see [8]) have fur-
ther highlighted the need for transparent models whose recommendations can be un-
derstood, in contrast to black box algorithms where the step from input data to output
decision is opaque. As we come to rely on algorithms to make decisions big and small, the
need for algorithmic transparency and the ability to explain machine predictions become
ever more acute.

Interpreting algorithms and making sense of behavioral data, however, has proven chal-
lenging. Behavioral data is usually massive, containing records of many individuals, each
with a large number of potentially highly correlated features. However, the data is also
sparse (with only a few observations available per individual) and unbalanced (few ex-
amples of the behavior within each class). Yet another challenge is heterogeneity: data is
composed of subgroups that vary widely in their behavior. For example, the vast bulk of
social media users have very few followers and post a few messages, but a few users have
millions of followers or are extremely prolific posters. Ignoring heterogeneity can lead an-
alysts to wrong conclusions due to statistical paradoxes [9, 10].

Machine learning, data science, and social science communities have proposed a num-
ber of approaches to learning explainable models from data. Popular among these are re-
gression methods and decision trees, and their ensemble variants, such as random forests
and boosting methods. However, while these approaches address one set of challenges,
they often trip over the remaining ones. Regression models (e.g., Ridge, Lasso, Elastic Net),
while offering interpretability, are limited by their specified functional form and fail to cap-
ture relationships in data that do not adhere to this form, and thus can be ineffective at
adequately representing the data. Tree-based methods, on the other hand, are very effec-
tive at capturing non-linear and unbalanced data, but have limited interpretability. While
they offer a measure of feature importance, the relationship between the outcome and
features is less transparent, as it requires navigating the depths of many trees, potentially
with the same features appearing at different levels.

Motivated by the need for algorithms that perform strongly at both joint goals of pre-
diction and explanation, we propose Structured Sum-of-Squares Decomposition (S3D) al-
gorithm, a mathematically principled method for learning interpretable statistical models
of behavioral data. The algorithm, which is a variant of decision trees [11], builds a sin-
gle tree-like structure that is both highly interpretable and can be used for out-of-sample
prediction. In addition, the learned models can be used to visualize data.

S3D works as follows: given a set of features and a binary or a continuous-valued out-
come Y , S3D identifies a subset of m important features that are orthogonal in their rela-
tionship with the outcome and collectively explain the largest amount of the variation in
the outcome. In addition to these selected features, S3D identifies correlations between all
features, thus providing important insights into interactions between features that were
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not selected by the model. Similar to decision trees, the S3D algorithm recursively bins the
m-dimensional space defined by the selected features into smaller, more homogeneous
subgroups or bins, where the outcome variable exhibits little variation within each bin
but significant variation between bins. However, in contrast to decision trees, it does so
in a structured way, by minimizing variation in the outcome conditioned on the existing
partition. The decomposition effectively creates an approximation of the (potentially non-
linear) functional relationship between Y and the features, while the structured nature of
the decomposition gives the model interpretability and also helps reduce overfitting. The
resulting model is parsimonious. Indeed, S3D is a low complexity model with only two
hyperparameters, but despite its low complexity we show that it is a highly performant
predictive tool.

To demonstrate the utility of the proposed method, we apply it to model a variety of
datasets, from benchmarks to large-scale heterogeneous behavioral data that we collect
from social platforms, including Twitter, Digg, Khan Academy, Duolingo, and Stack Ex-
change. Across datasets, the performance of S3D is competitive to existing state-of-the-art
methods on both classification and regression tasks, while it also offers several advantages.
We highlight these advantages by showing how S3D reveals the important factors in ex-
plaining and predicting behaviors on the question answering site Stack Exchange and so-
cial network Digg. Qualitatively, S3D allows for visualizing the relationship between the
outcome and features, and quantifies their importance via prediction task. Surprisingly,
despite high heterogeneity of these relationships in many datasets, just a few important
features identified by S3D can predict held-out data with remarkable accuracy.

The paper is laid out as follows. In Sect. 2 we examine related work. In Sect. 3 we intro-
duce the S3D model and describe the algorithm for training the model from data. Section 4
is the results section where we apply S3D to various datasets, comparing its accuracy to
state-of-the-art models while also using its interpretability to examine and understand
data. We conclude in Sect. 5. We expect that S3D can be a high utility tool to interpretable
modelling in both the scientific and commercial domains, and so have made our code open
source to the community at large [12].

2 Related work
An empirical study of socio-behavioral data typically begins with a researcher selecting
a small set of explanatory variables—perhaps those identified by Principal Component
Analysis (PCA), factor analysis, or a more complex method—and a functional form of the
relationship between these and the outcome variable, and performs regression analysis
to find the coefficients of the explanatory variables. S3D is a novel approach to predictive
analytics that combines the necessities of data modeling in a single method: dimensionality
reduction, predictive power and iterpretability.

Like PCA, S3D reduces the dimensionality of the data. However, while PCA is an un-
supervised technique that creates a smaller set of components that explain the largest
amount of variation between the explanatory variables; S3D is a supervised method. It re-
cursively selects features that explain the largest amount of variation between the explana-
tory variables conditioned on previously selected features (i.e., features at higher levels of
the tree), and thus creates a subset of features that are orthogonal to each other with re-
spect to the outcome variable. This smaller set of features accounts for the explainable
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variation of the outcome variable. Indeed different outcomes variables can result in dif-
ferent subsets of features, in contrast to unsupervised methods. Another factor that dif-
ferentiates PCA from S3D is that PCA-learned components are in the derived eigenspace
of the features, and thus, they are not directly interpretable within domain knowledge. In
contrast, S3D selects important features directly in the same space, which aids interpre-
tation.

S3D also builds a predictive model of data. Social science, machine learning and data
science communities have developed a variety of solutions for this task. However, while
these solutions address one set of challenges, they often trip over the remaining ones.
Linear models, such as linear and logistic regression, have been the mainstay of the com-
putational social sciences community for decades, due to their ability to provide inter-
pretable models of data. However, linear models have a number of drawbacks that limit
their utility. They are constrained by their functional form and cannot capture non-linear
relationships and complex interactions between features. Furthermore, the interpretabil-
ity of the coefficients of a linear model can be very limited in data with correlated features.
Normally, a researcher examines the effect of a feature on the outcome variable through
inspection of the linear coefficient of the feature in the model, but such analysis assumes
independence of the features (so that other features can remain constant given a change
in the feature). Thus, such analysis with correlated features is not good practice and can
lead to misleading conclusions. A standard avenue for improving a linear model is through
penalized regression, such as Lasso, Ridge and Elastic Net [13] to reduce the dimension-
ality of the feature space and to prevent overfitting [14]. These methods select important
features for explaining the data, but are not guaranteed to pick features that are uncorre-
lated. Furthermore, such approaches can also set the coefficients of the remaining features
to zero, which makes it impossible to learn how those features affect behavior. In contrast,
S3D explicitly learns relationships between correlated features from data and can express
these relationships through a network, giving insights into the interdependency between
selected and remaining features. Unlike linear models, it can also learn non-linear rela-
tionships in data.

Machine learning methods are often significantly more accurate than simpler linear
models. While deep learning has attracted attention recently due to its performance on
highly complex tasks in natural language processing, computer vision and robotics, tree-
based algorithms typically perform as well, if not better, on traditional tasks involving tab-
ular data. These algorithms are based on decision trees, such as CART [11], BART [15]
or MARS [16], which work by partitioning data into non overlapping bins to minimize
the variance of response variable, or some other cost function, within these subsets. De-
cision trees are typically prone to overfitting (e.g., early stopping and pruning) and so are
ensembles to create optimal models. Ensemble approaches include boosting models such
XGBoost or LightGBM, and bagging models the most well known of which is random
forest models [17]. Random forest models, for example, learn a model as an average of
individual decision trees trained on subsets of the data, and averaging in this way reduces
overfitting and optimizes performance on held-out test sets.

Decision trees are very effective at learning from non-linear and unbalanced data, and
ensemble tree models are popular due to their strong predictive performance. However,
the interpretability of these methods is mainly limited to feature importance, which quan-
tifies the importance of each feature by its contribution to minimizing the loss function.



Fennell et al. EPJ Data Science            (2019) 8:23 Page 5 of 27

While a decision hierarchy may be considered interpretable [18], many factors can com-
plicate interpretability, such as the depth of the tree and the fact that the same feature can
appear at multiple levels. As a result, one does not look too deeply in the tree—generally, at
the features at the first level only. In contrast, S3D does not reuse features at different lev-
els of the hierarchy, which lends itself naturally to visualization. As we show in this paper,
the aerial views of the important feature space serve to provide not just interpretability,
but insight into data.

In summary, S3D combines the performance of high accuracy tree-based methods with
the interpretability of regression. It carries out dimensionality reduction and feature selec-
tion as part of the model fitting stage, and can fit a variety of implicit functional relation-
ships between the variables, not just the linear relationship. S3D’s predictions of binary
outcomes are not as sensitive to parameter choices as BART’s [19]. It has much lower
complexity than tree-based methods which typically employ tens or hundreds of trees;
indeed S3D also has the advantage of having only two parameters to tune, as opposed to
twelve for a typical random forest. S3D adds structure to the feature importance offered
by random forests, showing which subset of features are sufficient for explaining varia-
tion in outcomes. Finally, S3D is fully transparent and allows for visualizing the data and
predictions. S3D addresses interpretability by identifying features that are important to
explaining the outcome variable, along with the relationship between these features and
the outcome. This feature identification can help inform mathematical models of human
behavior. Such model-based approaches have been used, for example, to predict popular-
ity of online content [20], the productivity of scientists [21], and the size of epidemics [22].

3 Method
We present the Structured Sum-of-Squares Decomposition algorithm (S3D), a variant of
the classification and regression trees (CART) [11, 15, 16], that takes as input a set of
features X = {Xj}M

j=1 and an outcome variable Y and selects a smaller set of m important
features that collectively best explain the outcome. The method bins the values of each im-
portant feature XS

j to decompose the m-dimensional selected feature space into smaller
non-overlapping blocks, such that Y exhibits significant variation between blocks but little
variation within each block. These blocks allow us to approximate the functional relation-
ship Y = f (X) as a multidimensional step function over all blocks in the m-dimensional
selected feature space, thus capturing non-linear relationships between features and the
outcome.

Our method chooses features recursively in a greedy manner, so that features chosen at
each step explain most of the variation in Y conditioned on the features chosen at the pre-
vious steps. Features that are correlated will explain much of the same variation in Y , and
our approach of successively choosing features based on how much remaining variation
in Y they explain results in a set XS = {XS

j }m
j=1 of important features that are orthogonal

in their relationships with Y . By decomposing data recursively, we create a parsimonious
model that not only quantifies relationships between the features and the outcome vari-
able Y , but also quantifies relationships among the features themselves. Figure 1 illustrates
the algorithm. The left panel shows the data, projected onto the space defined by two fea-
tures X1 and X2. As the first step, S3D bins the values of each feature and selects one that
explains the largest variation of the outcome Y , here X1 (middle panel). Next, it bins the
values of each unselected feature, to identify one that explains most of the remaining vari-
ation, here feature X2. The resulting two-dimensional partition of the feature space also
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Figure 1 Illustration of S3D learning a model of data. S3D bins the values of each feature (left panel) to select
one that explains the largest variation of the outcome Y (middle panel). Next, it bins each unselected feature
to identify one that explains the largest amount of the remaining variation. The aerial view of the partition of
the important feature space (right panel) represents a visualization of the data, which is also represented by a
tree (bottom panel). S3D continues partition the space using features not previously selected, until there is no
appreciable variation left to explain

serves as visualization of the data (right panel). The decomposition of the data according
to the selected features can also be represented by a tree (bottom). The algorithm contin-
ues in this manner until there is no remaining variation left to explain.

Our model is able to achieve performance comparable to state-of-the-art machine learn-
ing algorithms on prediction tasks, while offering advantages over those methods: our al-
gorithm uses only two tuning parameters, can represent non-linear relationships between
variables, and creates an interpretable model that is amenable to analysis and produces in-
sights into behavior that merely predictive models do not give. Below, we described the
key steps of the algorithm.

3.1 Structured feature space decomposition
A key concept used to describe variation in observations {yi}N

i=1 of a random variable Y is
the total sum of squares SST , which is defined as SST =

∑N
i=1(yi – ȳ)2, where ȳ =

∑N
i=1 yi/N

is the sample mean of the observations. The total sum of squares is intrinsically related
to variation in Y ; indeed the sample variance σ̂ 2 of Y can be directly obtained from this
quantity as σ̂ 2 = SST/(N – 1).

Given a feature Xj, one method of quantifying its importance, i.e., how much variation
in Y can be explained by Xj is as follows: (1) partition Xj into a collection PXj of non-
overlapping bins (Fig. 1), (2) compute the number of data points Np and the average value
ȳp of Y in each bin p ∈ PXj , and (3) decompose the total sum of squares of Y as

N∑

i=1

(yi – ȳ)2 =
∑

p∈PXj

Np(ȳp – ȳ)2 +
∑

p∈PXj

Np∑

i=1

(yp,i – ȳp)2, (1)

where yp,i here is the i’th data point in bin p. The first sum on the right hand side of Eq. (1)
is the explained sum of squares (or sum of squares between groups), a weighted average
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of squared differences between global (ȳ) and local (ȳp) averages that measures how much
Y varies between different bins p of Xj. The second sum is the residual sum of squares (or
sum of squares within groups), which measures how much variation in Y remains within
each bin p. The R2 coefficient of determination is then the proportion of the explained
sum of squares to the total sum of squares, given by

R2 =

∑
p∈PXj

Np(ȳp – ȳ)2

SST
. (2)

The R2 measure takes values between zero and one, with large values of R2 indicating a
larger proportion of the variation of Y explained by Xj. This method of approximating the
functional relationship between Y and Xj as a step function with bins, or groups PXj and
corresponding values ȳp, allows us to quantify the variation in Y explained by Xj through
the R2 of the corresponding step function as given by Eq. (2).

3.1.1 Binning values of a feature
We now introduce a method to systematically learn the binning PXj of the feature Xj which
will be central to our algorithm. Given the data, we can split the domain of the feature Xj

at the value s into two bins: Xj ≤ s and Xj > s. From Eq. (2), we see that the proportion of
variation in Y explained by such a split is

R2(s; Xj) =
NXj≤s(ȳXj≤s – ȳ)2 + NXj>s(ȳXj>s – ȳ)2

SST
, (3)

where NXj≤s and ȳXj≤s are the number of data points and average value of Y in the
bin Xj ≤ s, and vice versa for NXj>s and ȳXj>s. R2(s; Xj) can be computed for each possi-
ble value of s in the domain of Xj, and we can choose the optimal split s1 as the split
s that maximizes R2(s; Xj) of Eq. (3). Choosing s1, and binning the domain of Xj into
PXj = {[min(Xj), s1], (s1, max(Xj)]}, we can again find the next best split s2 to optimize the
improvement in R2. In general, having chosen n splits {su}n

u=1 with a resulting partition
PXj of n + 1 bins, the next best split sn+1 can be chosen as the split s that maximizes the
improvement in R2 as given by

�R2(s|PXj ; Xj) =
1

SST
(
Np(s)|Xj≤s(ȳp(s)|Xj≤s)2

+ Np(s)|Xj>s(ȳp(s)|Xj>s)2 – Np(s)(ȳp(s))2), (4)

where p(s) in Eq. (4) is the bin in PXj that contains the point s and p(s)|Xj ≤ s (resp. p(s)|Xj >
s) is the restriction of that bin to points Xj ≤ s (resp. Xj > s). In this manner, we recursively
split the domain of Xj to create a partition of the feature.

However, splitting in this manner can continue indefinitely, resulting in a model that
is too fine-grained and thus overfits the data. To prevent overfitting, we need a stopping
criterion. To this end we introduce a loss function L(PXj ) that penalizes the size |PXj | of
the partition, i.e., the number of bins:

L(PXj ) = 1 – R2(PXj ) + λ|PXj |. (5)
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The parameter λ controls how fine-grained the bins are: smaller values of λ allow for more
finer bins, and vice versa. The loss function of Eq. (5) reaches a minimum when the change
in R2(PXj ) from adding an extra split to PXj is less than λ—at this point we stop splitting
and return the binning PXj .

Having formed the binning PXj of Xj with splits {su}n
u=1, the total score R2(Xj) can be cal-

culated from Eq. (2), or by summing R2(s1; Xj) from Eq. (3) along with the �R2 terms in
Eq. (4) for each of the splits {su}n

u=2. Completing this procedure for all features gives a mea-
sure of feature importance, i.e., how much variation in Y each feature alone explains, and
ranking these features allows us to choose the most important feature XC1 that explains
the largest amount of the variation in Y .

3.1.2 Selecting additional features
After choosing the most important feature, we search the rest of the features for one that
explains most of the remaining variance in Y , then the third feature, and so on. Here, we
describe the procedure for finding the next best feature having already chosen l features
XS = {XS

1 , . . . , XS
l } with a corresponding binning PS = PS

1 × · · · × PS
l of the chosen feature

space, where × here is the cartesian product. In this case, a total R2(PS) =
∑

p∈PS Np(ȳp –
ȳ)2/SST of the variation in Y has been explained, and we now look for the feature that best
explains the remaining variation 1 – R2(PS).

Given a remaining feature Xj, we bin the domain of Xj similarly to how we binned it when
choosing the first feature. The first split s1 of Xj is chosen as the value s that maximizes
the improvement in R2, given by

�R2(s|PS; Xj
)

=
1

SST
∑

p∈PS

(
Np|Xj≤s(ȳp|Xj≤s)2

+ Np|Xj>s(ȳXj>s)2 – Np(ȳp)2), (6)

where p|Xj ≤ s (resp. p|Xj > s) is the set of data points in p ∈ PS for which Xj ≤ s (resp.
Xj > s). In general, given n splits and a corresponding partition PXj of Xj, the n + 1’st split
is chosen as the value s that maximizes

�R2(s|PXj ,PS; Xj
)

=
1

SST
∑

p∈PS×PXj |s∈p

(
Np|Xj≤s(ȳp|Xj≤s)2

+ Np|Xj>s(ȳXj>s)2 – Np(ȳp)2), (7)

with the sum in Eq. (7) taken over all elements p of PS × PXj that contain the point s. The
loss function in the general setting is

L
(
PXj |PS) =

1 – R2(PS × PXj )
1 – R2(PS)

+ λ|PXj |, (8)

where the denominator of the fractional first term in Eq. (8) normalizes this term to be
between zero and one, is the case in Eq. (5). This normalization is necessary because as
we progress through the algorithm, subsequent features may explain less of the variance
of Y (as features are chosen hierarchically), and so changes in 1 – R2(PS × PXj ) by splitting
Xj are smaller. The effect of this would be a coarser binning of the feature, and so the
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normalization ensures that this is not the case and that the feature is binned consistently
at each stage of the algorithm. Again, the partition PXj of Xj is chosen that minimizes the
loss function of Eq. (8), and the R2 improvement is calculated for this feature as

�R2(PXj |PS) = R2(PS × PXj

)
– R2(PS). (9)

This procedure is repeated for all remaining features Xj to select the feature Xl+1 with the
maximal R2 improvement.

This process of binning features, calculating their importance by the improvement �R2

and choosing the one with the largest improvement continues until no further variation
in Y can be explained or until an alternative stopping condition (such as a pre-specified
maximum number of steps) is met. Our algorithm learns a hierarchy of important features
that explain the variation in Y and a binning or partition PS with corresponding values
{ȳp}p∈PS approximating the functional relationship between the outcome and the features.
Note that, when binning a feature, once the vectors {{Np|Xj≤s}p∈PS }s and {{ȳp|Xj≤s}p∈PS }s

have been constructed (an operation that takes O(N) time), the binning is independent
of N , and instead depends on the number of unique values of the feature (as required
to calculate the optimal splits s at each step). The fact that S3D scales linearly with the
number of data points N allows us to apply the algorithm to large datasets, such as the
Twitter and Digg (see Sect. 4).

3.1.3 Hyperparameters
The S3D model has two hyperparameters: (1) λ that controls granularity of feature bin-
ning; (2) k that specifies the maximum number of features to use for prediction. The hy-
perparameter k is analogous to the maximum tree depth in decision tree methods. Both
hyperparameters are important to prevent overfitting — left unrestricted, the algorithm
can learn too fine-grained a model that fails to generalize to unseen data. We note that
it is possible to stop early in the training phase by restricting the maximum number of
features to select. In other words, the algorithm can stop when the number of selected
features reaches a predefined value. Nonetheless, it is recommended not to lay any limit
during the training phase but rather tune k in the validation step.

To tune the hyperparameters, we train S3D for various values of λ, in each case letting
the algorithm continue until there is no further improvement in R2. This results in a model
with mλ selected features and partition PSλ = {PSλ

1 , . . . , PSλ
mλ

}. Then, for k ∈ [1, mλ], we eval-
uate the predictive performance of the model using only the top k selected features and
the sub-partition {PSλ

1 , . . . , PSλ
k } (Fig. 2). Performance is measured on held-out tuning data

using a specified metric. The optimal hyperparameters (λ, k) are those that achieve the
best performance on held-out data.

3.2 Applications of the learned model
Given a dataset, S3D learns an ordered set of important, orthogonal features XS , a par-
titioning PS of the selected feature space with corresponding ȳp and Np values for each
bin or block p ∈ PS , and �R2 for each remaining variable at each step of the algorithm.
This decomposition serves as a parsimonious model of data and can be used for feature
selection, feature correlation, prediction and analysis as described below.



Fennell et al. EPJ Data Science            (2019) 8:23 Page 10 of 27

Figure 2 Hyperparameter tuning on Stack Exchange data. Top: R2 in the training set as a function of λ and k;
Bottom: AUC on the held-out data. Note that for illustration, we show the trajectory for only one of five splits.
Different “best” hyperparameters may exist for different splits

3.2.1 Feature selection and correlations
The ordered set XS of important, orthogonal features allows us to quantify feature im-
portance in heterogeneous behavioral data. The top-ranked features explain the largest
amount of variation in the outcome variable, while each successive feature explains most
of the remaining variation that is not explained by the features that were already selected.

Aside from the selected features XS , S3D provides insights into features that are not
selected by the algorithm, quantifying variation that they explain in the outcome variable
that is made redundant through the selected variables. This is calculated in the following
manner. At a given step l of the algorithm, feature XS

l is selected as the best feature with an
R2 improvement of �R2(PXS

l
|PS(l–1)) (Eq. (9)), where PS(l–1) is the partition prior to step l.

Meanwhile, a different remaining feature Xj has an R2 improvement of �R2(PXj |PS(l–1)). At
the next stage of the algorithm, given XS

l has been selected, Xj will have an R2 improvement
of �R2(PXj |PS(l–1) × PXS

l
), and thus the variation in Xj that is made redundant through the

selection of XS
l is the difference between these two �R2:

aXj ,XS
l

= �R2(PXj |PS(l–1)) – �R2(PXj |PS(l–1) × PXS
l

)
. (10)

The coefficients aXj ,XS
l

facilitate our analysis of (a) relationships between the features and
(b) the effect of unselected features on the outcome variable (through selected features to
which they are correlated). We implement the coefficients as weights in a feature network
that is weighted and directed (Fig. 8). This network gives a tool for analysis—unselected
features that otherwise can explain much of the variation in the outcome will have heavy
links, and the selected features XS

l to which these links point reveal correlations and
through which selected features the unselected feature is made redundant.

3.2.2 Prediction
The learned model can be used as a predictive tool for both discrete and continuous-
valued outcome variables. Given input data x, the model predicts the expected value μ̂

of Y as μ̂|x = ȳp(x), where p(x) is the block in decomposition PS to which x belongs. For
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continuous-valued outcome variables, this predicted expected value μ̂ will be the pre-
diction of the outcome of Y , i.e., ŷ|x = ȳp(x). For discrete-valued outcomes, the expected
value has to be thresholded to predict an outcome class. For binary outcomes Y ∈ {0, 1},
μ̂|x = ȳp(x) is the maximum likelihood estimate of the probability of the outcome Y = 1
in the block p(x), and thus our model specifies that the outcome Y = 1|x will occur with
probability ȳp(x). By choosing an appropriate discrimination threshold θ , our model then
makes the prediction ŷ as

ŷ|x =

⎧
⎨

⎩

1, ȳp(x) ≥ θ ,

0, ȳp(x) < θ .
(11)

Unbalanced data Two of the datasets that we study, Digg and Twitter, are highly
unbalanced—their outcome variables (whether the user adopts a meme) are binary, and
the proportions of positive outcomes in the data are 0.0025 and 0.0007 respectively. Using
the standard discrimination threshold θ = 0.5 results in predicting an insufficient number
of ones. To address this issue, we choose the discrimination threshold based on the train-
ing data, picking the largest value θ such that the number of predicted positive examples
in the training data is greater than or equal to the actual number of positive examples in
the training set. This threshold is then used for prediction on the held-out tuning data, as
well as on the test data. Note that, for these two datasets, we also alter the discrimination
threshold for the regression and random forest models in the same manner.

3.2.3 Analysis and model interpretation
One of the more interesting contributions of S3D is its potential for model exploration. By
selecting features sequentially, we create a model where typically lower amounts of vari-
ation are explained at successive levels, and so a visual analysis of the first few important
dimensions of the model allows us to understand the effects of the important features on
data and predictions. The expectations ȳp for each block p ∈PS facilitate this exploration,
approximating the relationship Y = f (X) between outcome and features. Furthermore, for
binary data, the predicted outcomes obtained by thresholding the expectations show how
predictions change as a function of the features, which allows for explaining predictions
and visually exploring the data.

3.3 Comparison to state-of-the-art
We compare S3D to linear and logistic regression (with Lasso and Elastic Net [13] regular-
ization), random forests (RF) [17], and support vector machines with linear kernel (Linear
SVM) [23], using 5-fold cross validation (CV; Section S1.2). The Scikit Learn [24] imple-
mentation of the random forest model used in our experiments is based on the CART
algorithm. We also compare S3D’s performance to models with similar complexity. First,
we use random forest to rank all the features and retrain the model on the top-k (and top-
2k) ranked features, where k is the number of important features selected by S3D. The
resulting models are called RF(k) and RF(2k) respectively. Second, we investigate the ef-
ficacy of using S3D for supervised feature selection. Specifically, we train random forests
using only the k important features chosen by S3D, which we refer to as RF-S3D model.

These algorithms are ideal benchmarks for S3D, with the ability to provide feature im-
portance scores, and therefore interpretability, to the trained models. Further, we empha-
size that S3D can produce sparse models that can do both feature selection and prediction.
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Figure 3 Classification performance on 5-fold cross validation in nine datasets. Error bars here indicate one
standard deviation. A higher bar (greater value) means better performance

Figure 4 Regression performance on 5-fold cross validation in nine datasets. Error bars here indicate one
standard deviation. A higher bar (greater value) means worse performance

As shown in Sect. 4.2, S3D performs similarly to logistic regression in both classification
and regression (Figs. 3 and 4), but uses fewer features (Fig. 5). Finally, both random forests
[25] and linear SVM [26] are proven to be adequately powerful in prediction tasks while
being relatively simple to train.
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Figure 5 Number of features selected by elastic net and lasso regression, as well as S3D, across outer CV for
all datasets. The five points in each box correspond to the number of features selected in each outer fold

We partition data into five equal size folds,a each of which is rotated as a hold-out set
for testing. For classification (except random forests), we standardize feature values by
centering and scaling variance to one. For regression, both features and target values are
standardized. Standardization of test set is based on training data. In each run, we train
and tune the models on four folds, where three are used for training and one for valida-
tion. Finally we evaluate the performance of the tuned models on the remaining test fold.
The final evaluation is therefore the average performance across each of the five folds.
In other words, we tune the hyperparameters with 4-fold CV (hereafter inner CV ) and
evaluate the performance of the optimal models with 5-fold CV (hereafter outer CV ). For
classification tasks, we evaluate performance using (1) accuracy (the percentage of cor-
rectly classified data points), (2) F1 score (the harmonic mean of precision, the percent-
age of predicted ones that are correctly classified, and recall, the percentage of actual ones
that are correctly classified), and (3) area under the curve (AUC). For regression tasks,
we employ (1) root mean squared error (RMSE), (2) mean absolute error (MAE-Mean),
(3) median absolute error (MAE-Median). Note that for classification tasks, higher values
of the metrics imply better performance. For regression tasks, lower values of the metrics
imply better performance. During the inner CV phase (i.e., hyperparameter tuning), we
optimize classification performance on AUC scores and regression on RMSE scores.

For Lasso regression we tune the strength of l1 regularization. For elastic net regression,
we tune the strengths of both l1 and l2 regularizations. For random forests, we tune (1) the
number of features to randomly select for each decision tree, (2) the minimum number of
samples required to make a prediction, (3) whether or not to bootstrap when sampling data
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for each decision tree, and (4) criterion of the quality of a split (choices are Gini impurity
or information gain for classification; MAE or MSE for regression). For linear SVM, we
tune the penalty parameter for regularization.

4 Results
We apply S3Db to benchmark datasets from the UCI Machine Learning Repository [27]
and from Luís Torgo’s personal website.c In addition, we include five large-scale behavioral
datasets, as described in the following paragraphs. Table 1 lists all 18 datasets used in both
classification and regression tasks, along with their statistics. See Additional file 1 Section
S1.1 for more detailed description of the benchmark data and data preprocessing.

Behavioral data came from various social platforms:
• Stack Exchange. The Q&A platform Stack Exchange enables users to ask and answer

questions. Askers can also accept one of the answers as the best answer. This enables
us to measure answerer performance by whether their answer was accepted as the
best answer or not. The data we analyze includes a random sample of all answers
posted on Stack Exchange from 08/2009 until 09/2014 that preserves the class
distribution. Each record corresponds to an answer and contains a binary outcome
variable Y ∈ {0, 1} (one indicates the answer was accepted, and zero otherwise), along
with 14 features. These features include answer-based features, such as the length of
the answer, measured in the number of words, lines of code and hyperlinks to Web
content the answer contains, the number of other answers the question already has,
the answer’s readability score, a numeric index giving the level of education needed to
easily comprehend the answer. Other features include the answerer’s reputation, how
long the answerer has been registered (signup duration in months) and a percentile
rank (signup percentile), the number of answers they have previously written, time
since the previous answer, the number of answers written by the answerer in his or
her current session, and answer’s position within the session, i.e., whether it was the
first, second, third, etc. answer the user wrote during the same session.

Table 1 Datasets Used for Performance Comparison

Prediction task Dataset # of samples # of features

Classification Breast Cancer (Original) [28] 683 9
Spambase 4601 57
SPECTF [29] 267 44
Parkinsons [30] 195 22
Stack Exchange 1,026,225 12
Khan 680,551 17
Digg 1,000,000 19
Twitter 5,000,000 19
Duolingo 767,718 18

Regression App Energy [31] 19,735 27
Building (Sales) [32] 372 103
Building (Costs) [32] 372 103
Pole Telecommunication [33] 15,000 48
Breast Cancer (Prognostic) [28] 194 32
Boson Housing [34] 506 13
Triazines [35] 186 60
Parkinsons (Motor) [36] 5875 16
Parkinsons (Total) [36] 5875 16
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• Khan Academy. The online educational platform Khan Academy enables users learn a
subject then practice what they learned through a sequence of questions on the
subject. We study performance during the practice stage by looking at whether users
answered the questions correctly on their first attempt (Y = 1) or not (Y = 0). We
study an anonymized sample of questions answered by adult Khan Academy users
over a period from 07/2012 to 02/2014. For each question a user answers we have 19
features: as with Stack Exchange, these include answer-based, user-based, and other
temporal features. The features include the amount of time it takes the user to answer
the question, (solve_time), the number of attempts the user made to answer the
question, time since the user’s previous answer (time_since_prev_ans), the number of
questions the user answered during the current session, (session_length), and the
answer’s position within the session. Additional features include temporal attributes
such as the hour of the day, day of the week, month, etc. that the question was
answered; user-based features, such as the month user signed up for Khan Academy,
the number of first_five questions user answered correctly without hints, time
between user’s first and last answer, (signup_duration), the numbers of all questions
user ever attempted to answer, and the number of all attempts made on all questions,
and other features, such as how long this user has currently been studying.

• Duolingo. The online language learning platform Duolingo is accessed through an app
on a mobile device. Users are encouraged to use the app in short bursts during breaks
and commutes. The datad was made available as part of a previous study [2]. The data
contains a 2-week sample (02/28/2013 through 03/12/2013) of ongoing activity of
users learning a language. All users in this data started lessons before the beginning of
the data collection period. We focus on 45K users who completed at least five lessons.
The median number of lessons was 7, although some had as many as 639 lessons.
Performance on a lesson is defined as Y = 1 if the user got all the words in the lesson
correct; otherwise, it is Y = 0. Features describing the user include how many lessons
and sessions the user completed, how many perfect lessons the user had, the month
and day of the lesson, etc.

• Digg. The social news platform Digg allows users to post news stories, which their
followers can like or “digg.” When a user diggs a story, that story is broadcast to his or
her followers, a mechanism that allows for the diffusion of contents through the Digg
social network. A further characteristic of Digg is its front page—stories that are
popular are promoted to the front page and thus become visible to every Digg user.
We study a dataset that tracks the diffusion of 3,500 popular Digg stories from their
submissions by a single user to their eventual promotion to and residence on the Digg
front page. We study information diffusion on Digg by examining whether or not
(Y ∈ {0, 1}) users “digg” (i.e., adopt) a story following exposure of the story from their
friends, and thus share that information with their followers. The features associated
with adoption include user-based features, such as indegree and outdegree (number of
followers and followees of the users), node activity (how often the user posts),
information received (the rate at which the user receives information from all
followees); dynamics-related features such as the number of times the user was
exposed to the story, and story-related features, such as its global popularity in the
previous hour, and diurnal-features, including the hour of the day and day of the
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week. Through this data, we can study the factors that are important in explaining the
spread of information in this social system.

• Twitter. On the online social network Twitter, users can post information, which is
then broadcast to their followers, i.e., the other Twitter users that follow that user.
This dataset tracks the spread of 65,000 unique URLs through the Twitter social
network during one month in 2010. Similarly to Digg, we can study social influence
and information diffusion by examining whether (Y = 1) or not (Y = 0) a user posts a
URL after being exposed to it when one of his or her friends posts. The features
associated with each exposure event are the same as those for Digg.

We compare the average predictive performance across 5 holdout sets of S3D to Lasso
regression, elastic net regression, random forests, and linear SVM. We show that S3D
can achieve competitive performance with the benchmark algorithms with a smaller set
of features. Finally, we explore our tuned S3D models and demonstrate their utility to
understanding human behaviors in Sect. g. Relevant datasets and codese can be used to
replicate the following results.

4.1 Tuning hyperparameters
An essential part of training a statistical model is hyperparameter tuning—in the case of
S3D, selecting the parameters λ and k. This procedure is illustrated for Stack Exchange
data in Fig. 2, where we show the total R2 at each step of the algorithm for various values
of λ, as well as the AUCs at these steps computed on the held-out tuning data. Overly
small values of λ perform quite poorly on the held-out data, as they produce very fine-
grained bins that overfit the data. Larger values of λ avoid being too fine-grained—the
R2 on the training set increases initially but diverges again as extra features selected in
additional steps overfit the data (as shown through the decreasing performance on the
held-out data; Fig. 2 bottom). Parameter k (x-axis in Fig. 2) controls the number of steps of
S3D, thus picking the optimal model between underfitting and overfitting. Supplementary
file s3d_hyperparameter_df.csvf reports the best hyperparamters for all datasets, across
the 4-fold inner CV processes.

4.2 Prediction performance
Figures 3 and 4 report performance on the outer CV for all datasets S3D, random forests,
linear SVM, and logistic regressions (both Lasso and elastic net). Overall S3D achieves
predictive performance comparable to other state-of-the-art machine learning methods.

In most cases, S3D’s performance is similar to that of logistic regression and linear
SVM. Its performance relative to random forest is especially remarkable considering the
difference in complexity of the models. S3D uses a subset of features and a simple m-
dimensional hypercube to make predictions, in stark contrast to random forests, which
use all features and learn many decision trees. In contrast, S3D selects a small set of fea-
tures, producing more parsimonious models as compared to Lasso and elastic net regres-
sion (Fig. 5).

S3D is especially useful as a feature selection method. Using just the few features selected
by S3D to train a random forest leads to highly competitive performance on the regression
task for many datasets (RF-S3D bars in Fig. 4). Remarkably, its performance is often better
than that of the random forest trained on the full feature set. This is likely because features
selected by S3D are uncorrelated with each other; while correlations among features used
by the random forest reduce performance.
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Figure 6 Boxplots of training time (seconds) of all five algorithms

Finally, we show that the runtime of S3D is competitive to the other four algorithms
(Fig. 6). For each dataset, all models were trained using the best parameters found in in-
ner CV and full training sets over each split (recall that there are five splits) repeated ten
times. In other words, there is no cross validation in the evaluation of runtime, but only
in training with the optimal parameters selected in the previous performance evaluation
steps. Therefore, each box in Fig. 6 shows the distribution of training time over 50 runs.
Note that the Python package Scikit Learn [24] is used to implement logistic regression,
random forest, and linear SVM, therefore producing superb runtime performance, as it is
highly optimized. We believe that the implementation of S3D can be further improved. For
instance, the timing of S3D includes reading the input file, whereas the other four meth-
ods do not require this. Furthermore, Fig. 6 only reflects training time with one set of
hyperparameters for each model. While random forests manifest outstanding efficiency,
it is worth noting that the large amount of hyperparameters (in this study, we searched
for four; there are at least four more) will inevitably lead to undesirably long hours of grid
search. On the other hand, S3D only needs two (λ and k), which substantially reduce user
effort in hyperparameter tuning.

4.3 Analyzing human behavior with S3D
In this section, we present a detailed description of applying S3D to understand human be-
haviors using Stack Exchange data.g We additionally included Digg in Sect. 4.3.2 to demon-
strate visualizations of the learned S3D model. Specifically, we used the best hyperparam-
eters during cross validation: λ = 0.001 and k = 5 for Stack Exchange; λ = 0.001 and k = 3
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for Digg. In order to provide the most comprehensive explanation of the data, we applied
S3D to all available data using hyperparameters that were seen most often during cross
validation.

4.3.1 Feature selection and correlations
For the large scale behavioral data, S3D selects a subset of features that collectively explain
the largest amount of the variation in the outcome variable. It also quantifies correlations
between selected features to unselected ones. In the following, we describe selected fea-
tures and examine the effects of the unselected ones.

We give a detailed description of the features selected at each step (Fig. 7) and the result-
ing feature network (Fig. 8). Figure 7 visually ranks the features by showing the amount of
variation explained by each feature at every step of the algorithm. The features selected at
each step are outlined in black. The first and most important feature selected is the num-
ber of answers provided before this question. This feature, for one thing, indicates how
active a user is in the community. For another, it implicitly reflects a user’s capability. In-
terestingly, there is obvious dependencies between the number of previous answers and
(1) reputation, (2) signup duration/percentile, and (3) code lines. Given the amount of pre-
vious answers in the model, the contribution of these features decreases dramatically. The
second feature S3D selects is signup percentile, which measures answerers’ “age” on Stack
Exchange as a percentile rank. Intuitively, the longer a user stays in the system, the more
likely they can accumulate their reputation and capability to produce a “good” answer. It is
noteworthy that signup duration and percentile share the exact amount of explained vari-
ation, which echoes the fact that the Spearman correlation between them is 1. Following
user tenure, the number of lines of codes is selected as the third most important feature,
followed by the number of words and URLs, which all, to some extent, manifest how infor-
mative an answer is. Note that the variation explained by the features number of words and

Figure 7 The amount of variation in the Stack Exchange outcome variable performance explained by each
feature at each step of the S3D algorithm. The feature that explains most of the remaining variation at each
step is highlighted here with a solid black rectangle surrounding its bar, whereas dashed rectangles indicate
that the corresponding feature has the same amount of contribution (i.e., �R2) but not selected
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Figure 8 The feature network for Stack Exchange, showing the variation in the outcome from the features
that have not been selected (pink) through the selected features (purple). Edge width is proportional to
weights described in Sect. 3.2.1—the thicker a link between two features is, the more correlated they are

URLs exceeds the variation explained by these features in the first step, leading to an inter-
esting implication that there may exist an interaction effect. In particular, given answers
with the same number of code lines and by answerers who signed up in similar time period
and shared similar activeness, the number of words and URLs will contribute more to the
final acceptance probability. The ability to identify moderation effects among variables, in
fact, is a fascinating characteristic of S3D when analyzing heterogeneous behavioral data.

With R2 = 0.075, the five selected features collectively explain the largest amount of vari-
ation in whether an answer is accepted by the asker as the best answer to his or her ques-
tion. The unselected features have been made redundant by the selected features. Such
redundancies can be represented as a directed and weighted network through the coef-
ficients of Equation (10), as shown in Fig. 8. Specifically, links between selected features
(purple) the unselected (pink) features show the variation in the outcome explained by the
pink node can be explained by the purple node. The network visualizes the correlations
and the significance of unselected features. While some of the correlations are obvious,
such as those between the number of answers, user reputation, and tenure length (i.e.,
signup duration/percentile), others are less evident. For example, there are links from rep-
utation to the number of words, and code lines, implying that reputable users may provide
more detailed answers containing informative clues such as references to related web-
pages and sample codes. Although relatively weak, the link from answer position pointing
towards the number of answers a user provided before and signup percentile alludes that
senior users may tend to be more active and engaging in the community, therefore being
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Table 2 Features found to be important by random forest in Stack Exchange and Digg, along with
their relative weights

Stack exchange Digg

feature weight feature weight

Signup Percentile 0.148 Activity 0.258
Signup Duration 0.143 Time Since Last Tweet 0.152
Reputation 0.130 Outdegree 0.068
# Ans. Before 0.125 Info Received 0.067
Time Since Prev Ans. 0.117 Indegree 0.058
Words 0.114 Meme Pop. (Current) 0.035
Readability 0.101 Meme Age 0.033
Code Lines 0.066 Neighb Indegree 0.032
Session Len. 0.023 Neighb Activity 0.032
URLs 0.022 Meme Pop. (Recent) 0.032
Ans. Position 0.012 Neighb Info Received 0.031
Images 0.000 Neighb Outdegree 0.030

Order 0.030
Inv. Exposure Rate 0.029
Time Last/Second to Last Exposures 0.028
Time Last/First Exposures 0.026
# Exposures 0.024
Hour 0.023
Day 0.013

early answerers to many questions. The feature network, in this manner, not only lets us
analyze which unselected features are explanatory of an outcome variable, but to which
selected features they are correlated and are made redundant, providing a tool to suggest
further exploration of correlations within the data.

For comparison, features found to be important by the random forest algorithm are
shown in Table 2, along with their weights. While the top two features selected by S3D
for Stack Exchange are also highly ranked by random forest, the latter considers other fea-
tures to be more important than the number of words, code lines and URLs, which S3D
selected as important features. Random forest ranks highly features like Signup Duration
and Reputation, which are highly correlated with existing features Signup Percentile and
# Ans. Written by User Before. These correlated features are not useful for prediction, and
may actually hurt performance. This is the reason why some feature selection algorithms,
such as minimum redundancy method [37], filter out redundant, highly correlated fea-
tures.

In the Khan Academy dataset, S3D selects as important features: (1) the time it takes
the user to solve the problem; (2) the number of problems that the user has solved on
the first attempt without hints; (3) time since previous problem; (4) the number of first
five problems solved correctly on the first attempt; (5) index of the session among all of
that user’s sessions; (6) index of the problem within its session. It is noteworthy that the
second and fourth features here are analogous to signup duration and reputation on Stack
Exchange, as the number of problems that a user solves correctly on their first attempt is
a combination of both skill and tenure.

For the Duolingo language learning platform, S3D picks similar skill-based features:
(1) the number of all lessons completed perfectly; (2) the number of prior lessons com-
pleted; (3) the number of distinct words in the lesson. Similarly, the first feature here is
equivalent to the second and fourth feature selected in Khan Academy, which quantifies
both skill and tenure.
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In the case of Digg social network, to explain whether a user will “digg” (or “like”) a story
recommended by friends, S3D selects as important features: (1) user activity (how many
stories this user recommended); (2) the amount of information received by this user from
the people she follows; (3) current popularity of this story, and (4) user in-degree. The first
two features describe how a user processes and receives information, while the third one
reflects how “viral” a story is, and fourth features is how many people the user follows.
The features selected by S3D are also ranked highly by random forest (Table 2); although,
features highly correlated with these, such as time since last tweet, which is correlated with
user activity, and indegree, which is correlated with the amount of information received,
are ranked equally high. Since their effect is already captured by the selected features, they
are not needed in the model.

For Twitter, S3D selects (1) the amount of information received by this user; (2) in-degree
(i.e., the number of followers and thus popularity) of friends; (3) the number of times this
user has been exposed to this meme; (4) user activity; (5) the age of this tweet; (6) user’s
out-degree (followees). S3D identifies the information received by the user as an important
feature for both Digg and Twitter, which highlights important role that cognitive load plays
in information spread online [38]. On the other hand, the differences such as the lesser
importance of user activity and greater importance of a user’s friends in Twitter suggests
interesting disparities in the manner of information diffusion on these two platforms.

4.3.2 Model analysis
S3D is a promising tool for data exploration. By iteratively selecting features and measur-
ing the amount of outcome variation they explain (Fig. 7), we can visualize the important
dimensions of the model to fully understand both effects of important features and the
corresponding predictions. See Additional file 1 for a detailed step-by-step illustration.

For Stack Exchange, S3D selects five important features. We visualize the model with
the first four features in Fig. 9, that unfolds the m = 4 hypercube learned by the model.
It shows how the expectation (top plot) and the corresponding prediction (bottom plot)
that the answer will be accepted as best answer, vary as a function of the four selected
features. The prediction threshold selection is described in Sect. 3.2.2. Each row of plots
in Fig. 9 corresponds to a single bin of the first selected feature number of answers before,
while each column corresponds to bins of the second feature signup percentile rank. Indi-
vidual plots vary according to the third and fourth features code lines and words. It is quite
evident that variation in the outcome (i.e., Fig. 9 top plot) is greater between plots than
within plots, a result of the fact that features are picked successively to explain such vari-
ation. These plots show the collective effects of these four features: acceptance increases
with the user’s experience (number of answers before feature) and tenure (signup percentile
rank). Furthermore, longer answers with more words and lines of code are more likely to
be accepted as best answers. Another interesting pattern emerges when the number of
answers provided before is above 3587: the acceptance rate rises when signup percentile
goes down. In other words, given a high level of user engagement in the community, newer
users tend to produce answers that have higher chances of being accepted. On the other
hand, more senior users tend to have a higher probability of having their answers accepted,
when the number of previous answers is lower.

We also examine the S3D model learned for Digg to illustrate its effectiveness on highly
unbalanced and heterogeneous data. Here, S3D selects as important features user activ-
ity (i.e., how often a user posts per day), information received (the number of stories, or
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Figure 9 Visualization of the S3D model learned for Stack Exchange, showing the decomposition of feature
space defined by the four most important features. These plots represent the partition of the 4-dimensional
hypercube, and show how the acceptance probability (top) and corresponding predicted acceptance
(bottom; red for label 1 and green for 0) of data points vary within the space. Gray areas have no observations

memes, a user’s friends recommend), the current popularity of the story, i.e., how many
users have recommended it, user in-degree. The model, presented in Fig. 10, shows ex-
treme heterogeneity in data with values of features and adoption probabilities varying
widely, and notable here is S3D’s ability to learn appropriate binnings of the features over
many orders of magnitude. Specifically, the figure shows that the probability of a user to
adopt a story increases when he/she is more active in the community (see also Figure S5),
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Figure 10 Visualization of the S3D model learned for Digg, showing the decomposition of feature space
defined by four most important features. Each plot shows adoption probability of a meme within each block
in the 3D feature subspace. Each bottom plot shows predicted meme adoptions. Gray areas have no
observations

but decreases as users receive more information from friends (see also Figure S6). Specifi-
cally, given relatively low activity (e.g., adopting fewer than 505 stories), those users seeing
less information from friends are more likely to adopt a new story (corresponding to higher
color intensity on the left hand side in each plot). The highly active users, on the other
hand, also tend to receive more information—around 1000 stories per day—from friends.
However, they too are less likely to adopt a new story as they receive more information
from friends. These two features—user activity and information received—represent the
interplay between information processing and cognitive load. Our analysis highlights the
extent of to which information overload, which occurs when users receive more informa-
tion than they can effectively process, inhibits adoption and spread of memes online [38–
40].
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The third feature current popularity shows the impact of story popularity (i.e., virality
or stickiness) on adoption. Our model shows that more popular stories are more likely to
be adopted by individuals, as would be expected of viral memes. Striking is the absence of
features related to the number or timing of exposures, either as selected features or in the
feature network. The exposure effects may be quite subtle or even non-existent. The latter
suggests that information on Digg spreads as a simple contagion where the probability of
adopting a meme is independent of the number of exposures [41, 42].

The large heterogeneity as a function of basic node features has important implications
for the inference of social contagion, because heterogeneity and underlying confounders
may distort analysis. A possible approach to such inference is to decompose the feature
space, as in Fig. 10, and statistically test the effect of multiple exposures in the resulting
homogeneous blocks, an approach that would ensure that the most important factors that
best explain the variation in the adoption of information have been conditioned on.

5 Conclusion
We have introduced S3D, a statistical model with low complexity but strong predictive
power that offers potential to greatly expand the scope of predictive models and machine
learning. S3D provides not only predictive capabilities but also explanation through its
comprehensive description of data. Learning from the data in a structured manner, S3D
allows us to construct the hierarchy of features or co-variates important in explaining an
outcome, and allows us to examine the effect of these features on the outcome variable
through visualization of the model in its projected form (e.g., Figs. 9 and 10). This is a pos-
itive step towards transparent algorithms that can be examined for bias, which presents a
major stumbling block in the development and application of machine learning. Further-
more, S3D has the added benefit of quantifying explained variation in features unselected
by the algorithm, as userful component for practitioners who are often concerned with
the relationship between specific co-variates and an outcome variable.

We have demonstrated the effectiveness of S3D on a variety of datasets, including bench-
marks and real-world behavioral data, where it predicts outcomes in the held-out data at
levels comparable to state-of-the-art machine learning algorithms. Its potential for inter-
preting complex behavioral data through feature ranking, identifying feature correlations
and visualization, however, goes beyond these alternate methods. Our approach reveals
the important factors in explaining human behavior, such as competition, skill, and answer
complexity when analyzing performance on Stack Exchange or essential user attributes
such as activity and information load in the social networks Digg and Twitter. Aside from
increasing our understanding of social systems, knowledge about what factors affect be-
havioral outcomes can also help us design of social platforms that improve human per-
formance, including, for example, optimizing learning on educational platforms [2, 43] or
fairer judicial decisions [7]. The insights gained from the model can help design effective
intervention strategies that change behaviors so as to improve individual and collective
well-being. Note that while S3D, as currently described, works with binary or continuous-
valued outcomes, it may be possible to extend it also to categorical outcomes.

Moving forward, there are many areas where S3D can make a considerable impact, but
we here highlight two that are of considerable interest to the authors. The first is the math-
ematical modeling of human behavior, where researchers require tractable models that
are amendable to analysis but that also have a level of complexity that allow them to accu-
rately capture behaviour [44–46]. Here, S3D can be used as a tool to extract ingredients
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(i.e., co-variates) important to such models, and also functional forms that are required
in such models. The second is the use of S3D by practitioners to both explain predictions
and analyze interventions based on these predictions. Transparency should be a key re-
quirement for algorithms applied to sensitive areas such as predicting recidivism, and our
work here shows that simple algorithms, such as S3D, can meet this requirement without
sacrificing predictive accuracy. The development of machine learning tools should not be
restricted to optimizing one single metric (predictive power), as other ingredients, such as
interpretability, can improve how these methods effect society and are perceived thereof.
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