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Abstract
Car sharing is one the pillars of a smart transportation infrastructure, as it is expected
to reduce traffic congestion, parking demands and pollution in our cities. From the
point of view of demand modelling, car sharing is a weak signal in the city landscape:
only a small percentage of the population uses it, and thus it is difficult to study
reliably with traditional techniques such as households travel diaries. In this work, we
depart from these traditional approaches and we leverage web-based, digital records
about vehicle availability in 10 European cities for one of the major active car sharing
operators. We discuss which sociodemographic and urban activity indicators are
associated with variations in car sharing demand, which forecasting approach
(among the most popular in the related literature) is better suited to predict pickup
and drop-off events, and how the spatio-temporal information about vehicle
availability can be used to infer how different zones in a city are used by customers.
We conclude the paper by presenting a direct application of the analysis of the
dataset, aimed at identifying where to locate maintenance facilities within the car
sharing operation area.
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1 Introduction
Automobile transportation has been one of the main drivers of the population growth
and increasing wealth that have characterised the last two centuries [1]. Thanks to cars,
people have had greater access to jobs, goods, services. However, these benefits have not
come for free. The price paid for our increased mobility has been huge in terms of envi-
ronmental pollution, city congestion and resulting health issues. We are now at a turning
point for personal mobility systems: policy makers and citizens share the common idea
that it is time to rethink the way we move. There are three main driving forces behind
this personal mobility revolution: smart transportation, sharing economy, and green ve-
hicles, all tightly intertwined. The departure from ownership mindset to usage mindset
will make it possible to have significantly fewer vehicles in our cities. The implications
are that we can save space (public parking space and private garage space) and use it for
something with increased added value than to host idle cars for hours (a private car is
used only 5% of its available time, corresponding to 72 minutes per 24 hrs [2]). This usage
mindset will also allow people to rent the car size most appropriate to their daily needs,
thus implementing the Mobility-as-a-Service concept. Since the average vehicle has only
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around 1.5 occupants [3, 4], people can refrain from buying a car able to address the ex-
treme case of personal mobility (e.g., moving a whole family for a vacation) and instead
use two-seaters, which are more suitable for everyday commuting. On occasion, they will
be able to rent larger vehicles if needed. The virtuous mobility cycle is completed with the
switch to electric vehicles, which allow for a drastic reduction in the carbon footprint of
personal mobility.

In this framework, car sharing is emerging as one the most promising examples of
Mobility-as-a-Service [5]. The general idea of car sharing is that the members of a car
sharing system can pick up a shared vehicle of the car sharing fleet when they need it.
Different operators may implement different pickup/drop-off policies. In station-based
systems, members can only pick up and drop off vehicles at designated locations called
stations, as in the Autolib system in Paris. If the service is two-way (e.g., Zipcar, Modo),
people are asked to bring back the vehicle to the station where they initially picked it up.
Otherwise, the service is called one-way. One-way services are definitely the most popular
among customers thanks to the flexibility they provide. Examples of one-way car sharing
are Autolib, Ha:Mo ride, CITIZ. One-way services can drop altogether the concept of sta-
tion: this is the case of so-called free floating car sharing—such as Car2go, DriveNow,
Enjoy—whose customers can pick up and drop off vehicles anywhere within a predefined
operation area.

Car sharing is a weak signal in the city landscape: the fraction of people relying on car
sharing for their daily trips is rapidly increasing but it is still in the order of single digit per-
centage points in the best cases [6]. So far, car sharing has been mostly studied through
surveys and direct interviews with its members [5, 7]. In addition, car sharing is typically
not accounted for in households travel diaries periodically collected by city administra-
tions. Even if it were, the limitations of travel surveys are widely acknowledged, and range
from their inability to capture changes in the routine travel behaviour to their underesti-
mation (because of underreporting from people) of short, non-commute trips [8]. More-
over, running a survey is very expensive if one wants to capture a statistically meaningful
sample.

Cities have been considered kaleidoscopes of information since a long time [9] but the
extent to which this is true has reached new heights now that a myriad of electronic devices
have weaved into its fabric. From the car sharing perspective, this means that we can now
know exactly when and where cars are available, and we can observe shared vehicle flows
as they happen in the city. This knowledge opens up a new avenue of research that goes in
the direction of the new science of cities and urban computing: using data and electronic
devices to extract knowledge and to improve urban solutions. Along these lines, the goal
of this paper is to stimulate a discussion on how to apply urban computing ideas to the car
sharing domain. To this aim, we exploit the availability of public, web-based data about free
floating car sharing in 10 European cities (whose main characteristics are summarised in
Table 1 for the convenience of the reader) and we carry out an analysis with the following
objective in mind: to understand what mining this kind of data can bring to cities and to
car sharing operators alike. The main contributions of this study can be summarised as
follows:

• We perform an explanatory analysis of the car sharing demand as a function of the
sociodemographic and urban fabric (i.e., number, heterogeneity, and category of
Foursquare Points of Interests—PoI) indicators associated with the cities of Milan,
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Table 1 General information on the 10 cities (area: km2, population density: people/km2; education:
persons aged 25-64 with ISCED level 5, 6, 7 or 8 as the highest level of education; mean daily
temperature: minimum/maximum average daily temperature over the year). Source: Urban Audit
Database [14] & Wikipedia

City eGDP/capita Population Area Pop. Density Education Mean daily C◦

Amsterdam 46,952 853,312 165.76 5147.876 254,000 3.4/17.6
Berlin 35,627 3,520,031 891.68 3947.639 752,300 0.6/19.2
Florence 31,547 382,929 102.32 3742.465 59,627 6.5/24.6
Copenhagen 70,183 559,440 88.25 6339.263 152,817 0/17
Milan 87,786 1,368,590 181.67 7533.380 224,256 2.5/23.6
Munich 46,377 1,450,381 310.70 4668.107 371,200 0.3/19.4
Rome 55,385 2,874,529 1287.36 2232.887 415,766 7.5/24.5
Stockholm 81,395 939,238 187.16 5018.369 234,787 –1.7/18.8
Turin 74,725 886,837 130.17 6812.910 109,314 2.9/20.8
Vienna 58,140 1,867,582 414.87 4501.608 232,009 1.2/21.7

Rome, and Turin.a While a single explanatory pattern does not emerge across the
cities, they share indeed several similarities. In fact, their car sharing demand is
positively associated with high educational attainment (all Italian cities) and
negatively correlated with commuting outside of the municipality area (Milan, Rome).
These findings confirm the conclusion of the most recent sociodemographic surveys
about car sharing services [10–13], but at a much finer spatial granularity and without
relying on expensive and time-consuming interviews/questionnaires. With regards to
the urban fabric indicators, the only PoI category that seems to have a statistically
significant effect on car sharing demand is that of nightlife-related activities,
suggesting that leisure is the most typical trip purpose.

• We take into consideration several approaches to demand forecasting, and we evaluate
which are the best performing when it comes to car sharing pickups/drop-offs
forecasting. Our results show that Random Forest yields consistently better results
than simple average-based forecasting, time series forecasting, vanilla neural
networks, and a popular custom approach proposed in the literature. However,
prediction quality is in general quite good, even with the simplest solutions.

• Four distinct car availability temporal patterns can be recognised in the cities
considered in this study. We have labelled them day, night, neutral, and high-intensity
behaviours, based on when they exhibit their peak availability and on the intensity of
this peak. We also show that these patterns tend to be spatially autocorrelated, i.e.,
neighbouring cells are likely to feature the same behaviour.

• Motivated by the importance that customers place on the cleanliness of vehicles, we
propose a simple approach to the effective deployment of car sharing maintenance
facilities. We show that including the airport zone in the operation area and locating
maintenance facilities there is a simple yet effective strategy to reduce the
maintenance trips carried out by the car sharing workforce.

2 Related work
In the following we provide a brief overview of the most relevant works in the area of data
science for car sharing, data science for transportation systems in general, and data-driven
car sharing operation models.
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2.1 Knowledge mining from survey data
Until recently, knowledge about car sharing systems has been mostly acquired through
surveys, in which car sharing operators and members are interviewed. The main goal of
these studies is to characterise the sociodemographic profile of car sharing users, as well
as investigating the reasons behind their choices and the impact that car sharing has had
on their mobility behaviour. In 2005, Millard-Ball [15] presented one of the first compre-
hensive sociodemographic analysis of station-based car sharing in North America, high-
lighting a few key demographics indicators that will constantly reappear also in analyses
of more recent car sharing solutions. After interviewing 978 US and 362 Canadian car
sharing members through a web-based survey, Millard-Ball reports that car sharing mem-
bers are typically young (25–44 year old), with high income and well-educated. They live
in small households, often with no private cars. This survey does not support the find-
ing, often presented in the related literature, that car sharing members are typically male.
Recreational trips, shopping-related trips, and personal business trips are by far the most
popular trip purpose for the respondents. In 2010, these findings are substantially con-
firmed by [16] for Europe, with the interesting addendum that car sharing customers tend
to have season tickets for public transport more than the general population.

Considering that free floating car sharing is a recent addition to the car sharing domain
(e.g. Car2go was founded in 2008, and started a significant expansion only in 2011), in
the following we overview recent surveys [10–13] focusing specifically on the free float-
ing modality. Kopp at al. [10] recruited 204 males between 25 and 45 years of age living
in the cities of Munich and Berlin, Germany. 109 were free floating car sharing members
(DriveNow), 95 did not use car sharing. Respondents were asked to use a custom-built
app to track their trips and to specify the trip purpose and the mode of transport. The
findings of this study confirm previous results obtained for station-based car sharing: free
floating car sharing members have higher levels of education, higher income, fewer private
cars, and more public transport subscriptions with respect to non-members. The study
also highlights that car sharing members typically live in denser neighbourhoods, and are
more intermodal and multimodal in their mobility behaviour. No statistically significant
difference in trip purpose was detected between members and non-members: most trips
are work-home trips (57%), leisure (19%) and shopping/errands (13%). Giesel and No-
bis [12] perform a similar study for DriveNow and Flinkster users in Munich and Berlin,
reporting substantially the same findings.

Becker et al. [13] directly compare free floating and station-based car sharing mem-
bers in the city of Basel, Switzerland. While the sociodemographic profile of car sharing
is largely the same between station-based and free floating and substantially the same as
that pictured in the previous literature, free floating car sharing members in Basel differ-
entiate from their station-based counterpart in that they tend to use public transportation
less. The authors remark that free floating car sharing may act as a complement to public
transportation, filling the service gaps that their users might experience. The trip purposes
of free floating car sharing members is quite diversified, but mostly involve visiting, shop-
ping, and commuting, while station-based car sharing mostly covers leisure trips, goods
transport, and shopping.

Wittwer and Hubrich [11] discuss the findings from a two-stage survey carried out in
Hamburg, Germany, among Car2go members. The first stage of interviews took place in
2011, at the beginning of the Car2go service in the city, the second stage was run in 2016,
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when the service had been in place for a few years. From the sociodemographic standpoint,
the 2011 and 2016 cohorts substantially share the same profile: largely man, 24–49 years
old, high income, low car access, often with public transport season tickets. 2016 active
users overwhelmingly rely on car sharing for leisure trips (72%), but significant percent-
ages also use it for shopping and errands (50%) and for work/education trips (42%).

Based on the above overview, we can conclude that survey findings are consistent as far
as the sociodemographic profiles of car sharing users are concerned, while contrasting re-
sults have been obtained regarding car sharing trip purpose and relationships with public
transportation. In Sect. 4 we will discuss our findings in light of the above results.

2.2 Knowledge mining from digital data
The understandings and advancements brought about by the works described in Sect. 2.1
are invaluable, but the collection of survey data is expensive, time consuming, and does
not scale. Typically, travel surveys cover a relatively small sample of all the trips of interest
(because the number of participants as well as the observation period are typically quite
limited). Furthermore, it is a well-known problem that travel surveys often tend to un-
derestimate the number of trips and to show a bias in the types of trips being reported
[8]. For these reasons, in this work we depart from this approach and we exploit pub-
lic, web-based, digital records, whose geotagged and time-stamped variety of data can be
analysed with data mining techniques. These data can be collected for a possibly very long
time with minimal effort, and can provide geographically diverse and almost continuous
measurements of the systems under study.

In the related literature, the works by Schmöller et al. [17] and Willing et al. [18] are
mostly focused on the external factors that may influence car sharing demand. In particu-
lar, Schmöller et al. [17] highlight the role played by weather and demographics on the car
sharing demand, while Willing et al. [18] tackle the problem of understanding if Points of
Interest (PoI) in each city can be used as demand predictors. Differently from Willing et al.
[18], in this work we study the effects of PoIs taking into account collinearity of predictor
variables and selection bias in p-value computation, resulting in a much smaller effect of
PoIs on the car sharing demand. The same considerations apply for Schmöller et al. [17].
Our work is also close to [19], which considers free-floating car sharing in multiple cities.
However, Kortum et al. [19] focus on the growth rate of free floating car sharing rather
than on the characterisation from the supply side point of view. Finally, in [20], we have
presented an analysis of station-based car sharing in a single city. The analysis in [20] is
more oriented to issues related to the presence of stations (their capacity, how their be-
haviour can be mathematically modelled using queueing theory, etc.) and suffers from the
lack of vehicle identifiers in the dataset. The technique used in [20] for detecting station
usage is adapted here to the free floating case, but the analysis presented here is richer,
because richer is the dataset extracted from the free floating car sharing operator.

Several works in the literature also focus on the problem of demand forecasting, which
we tackle in Sect. 5. This is typically done in conjunction with a proposal regarding vehi-
cle relocation, which involves deciding how to proactively relocate shared vehicles in the
operation area in order to meet the future demand. We can group forecasting proposals
in three different classes, based on the approach they rely upon. There is a group of pa-
pers whose forecasting approach relies on techniques for time series forecasting. Wang et
al. [21] leverage selective moving averages, Holt’s model, Winter’s model as well as Tabu
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Search heuristics for forecasting the demand in a car sharing service in Singapore. No
prediction evaluation is carried out in the paper. Müller and Bogenberger [22] focus on
the city of Berlin and investigate how to predict future bookings using seasonal ARIMA
model and exponential smoothing with Holt-Winters-Filter. The second class of forecast-
ing methods are those coming from the machine learning domain. Cheu et al. [23], for
example, compare the forecasting performance of a neural network approach against that
of Support Vector Regression, and find that the former provides better predictions. Neural
networks have been later used also in [24–26]. The third class of forecasting approaches
relies on custom solutions specific for the problem at hand. Boyaci et al. [27], for exam-
ple, compile origin-destination matrices by simply averaging the observations for differ-
ent hours of the day, days of the week, and months of the year from real car sharing data.
Weikl and Bogenberger [28] devise a prediction algorithm based on finding clusters of
behaviours for daily timeslots. In all the above works, the evaluation of forecasting perfor-
mance is carried out considering only a single city.

A preliminary analysis [29] of this dataset has been presented at KNOWMe’17, an
ECML-PKDD workshop without copyrighted proceedings. In this extended version, we
have added the sociodemographic study (Sect. 4) and the demand forecasting analysis
(Sect. 5). In addition, we have added the analysis of the spatial autocorrelation of vehicle
availability clusters (Sect. 6).

2.3 Knowledge mining for other transportation systems
From the methodology standpoint, this work is close to [30–33], in which bike-sharing,
rather than car-sharing, systems have been analysed. Due to the different nature of the
two systems, people use them differently, hence the results obtained for bike sharing sys-
tems cannot be applied directly to car sharing. However, similar methodologies can be
exploited, e.g., to group stations based on how they are used by the customers.

This work is also orthogonal to the research efforts in the area of car pooling/ride sharing
[34, 35]. The idea of car pooling/ride sharing is that people may share a vehicle (be it a
private or public vehicle, e.g., a taxi cab) to perform their trips. Works in the area of car
pooling typically focus on the amount of rides that can be shared, based on the historical
or real-time trajectories of users, hence their focus is very different from that of this work.

2.4 Operation models for car sharing
As one of the pillars of a smart transportation system, car sharing has recently been the
subject of extensive research from the operational standpoint. The research activity on this
area has focused both on short and long term strategic decisions. The latter involves prob-
lems like planning the station/parking infrastructure [27, 36, 37] or planning the recharg-
ing infrastructure. The former is focused on decisions such as when and how to redis-
tribute shared vehicles [38–41] or when and how to recharge them [42, 43].

To address the above problems, optimisation frameworks and operational decision tools
for car sharing systems have been studied in the literature, but the proposed solutions have
often been evaluated either on simulated scenarios [44, 45] or using as input the demand
(in terms of origin/destination matrix) obtained from surveys [36, 46]. On the contrary,
the availability of a statistical characterisation of the general properties of real car-sharing
systems, as well as a precise understanding of their emerging trends, is essential to both
researchers and operators in order to design more effective decision support tools, and for
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the calibration and validation of simulations of car sharing systems. Thus, a data-driven
analysis as that presented in this paper can be exploited to both drive and evaluate solu-
tions for the supply-side of car sharing.

3 The dataset
The dataset comprises pickup and drop-off times of vehicles in 10 European cities for
one of the major free-floating car sharing operator (Table 2). For nine of these cities, data
has been collected between May 17, 2015 and June 30, 2015. For Munich, data covers the
period from March 11, 2016 to May 12, 2016. The data has been collected every 1 minute
using the available public API, which yields responses in the form of JSON files. Errors in
the data collection process are due to technical problems on the booking website, in which
cases corrupted entries have been discarded from the dataset. Each entry in the dataset
describes the longitude-latitude position of available shared vehicles in the car sharing
system, plus additional information. Each entry in the dataset has the following structure:

〈vin,date_time,lon,lat,fuel,interior,exterior,engine〉, (1)

where vin is the unique identifier of a vehicle, date_time contains the date and the time
at which the available vehicle has been observed, 〈lon,lat〉 are the geographical coordi-
nates, 〈interior,exterior〉 refer to the cleanliness of the vehicle, engine specifies
where the vehicle is electric or not. Due to faulty GPS systems, the reported coordinates
may be inaccurate. For this reason the dataset has been preprocessed and coordinates that
are manifestly invalid (e.g., cars available in different countries) have been discarded. Data
preprocessing and analysis has been carried out in R.

Given the nature of our dataset, movements of cars have to be inferred from their un-
availability during a certain time frame. Thus, when a car disappears from location A to
later reappear at location B, we assume that the car has been picked up for a trip. We have
no explicit way for distinguishing between regular customer trips and maintenance trips
(e.g., cars that have been picked up by the car sharing operator for cleaning or repairing),
as we simply observe a car disappearing from the map.

In order to understand the main characteristics, in terms of mobility, of the ten cities
in which the car sharing system under study is operating, we have extracted information
(summarised in Table 3) from the Eurostat’s City Urban Audit database [14]. Figure 1 sum-
marises the main transportation mode in each city as resulting from the Principal Com-
ponent Analysis applied to the reported modal share. We can identify three main classes

Table 2 Summary of dataset

City # Trips # Cars Op. Area [km2] Cars/km2 Starts Ends Duration

Amsterdam 49,901 349 59 5.880 2015-05-17 2015-06-30 45 days
Berlin 223,044 981 160 6.115 2015-05-17 2015-06-30 45 days
Florence 18,944 198 61 3.268 2015-05-17 2015-06-30 45 days
Copenhagen 12,168 194 41 4.712 2015-05-17 2015-06-30 45 days
Milan 156,080 686 120 5.737 2015-05-17 2015-06-30 45 days
Munich 81,862 499 89 5.592 2016-03-11 2016-05-12 63 days
Rome 99,515 584 90 6.480 2015-05-17 2015-06-30 45 days
Stockholm 15,612 250 36 6.871 2015-05-17 2015-06-30 45 days
Turin 25,091 299 53 5.646 2015-05-17 2015-06-30 45 days
Vienna 144,474 829 110 7.569 2015-05-17 2015-06-30 45 days
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Table 3 Modal share in the 10 cities

City Bike (%) Walking (%) Public Transport (%) Motorized (%)

Amsterdam 22.00 4.00 30.00 44.00
Berlin 9.90 7.20 41.00 38.50
Florence 4.04 7.68 19.10 66.82
Copenhagen 36.12 5.84 29.23 26.40
Milan 2.05 8.82 35.20 51.53
Munich 10.10 6.60 45.20 37.40
Rome 0.25 7.37 23.30 68.34
Stockholm 7.00 15.00 43.00 33.00
Turin 1.47 10.30 24.20 64.07
Vienna 7.00 27.00 39.00 26.97

Figure 1 Modal split: principal component analysis

of cities: one in which motorised modes dominate, one in which public transport (PT) and
walking are more important, and one in which people move prevalently by bike.

In terms of pricing structure, the policy implemented by the car sharing operator at
the time the dataset was collected was quite simple: the rental price is a linear function
of the rental time (the specific price per minutes varies across the ten cities in the range
[0.24, 0.46] ecent/min). No surge pricing nor proximity-based pricing were implemented
in the ten cities. Also, there were no incentives for customers to change their destination
and to bring back cars to areas where cars where more in demand. A per-kilometre fee is
applied only when the car is used for more than about 200 km.

Finally, an interesting feature of this dataset is that it contains entries for two cities
(Copenhagen and Stockholm in our analysis) for which the car sharing operator has now
shut down service. An index that is often used as a measure of car sharing success is the
vehicle utilisation rate, defined as the number of daily trips per vehicle. A higher value
means that vehicles are used intensively in the city, hence the car sharing service is more
profitable. Please note that long trips in which customers rent the shared vehicle for a long
time are not the target of car sharing services but belong to the class of long-term rental.
For this reason, the vehicle utilisation rate, with its ability to capture the short and fre-
quent trips, is a direct measure of car sharing effectiveness. Figure 2 shows the utilisation
rate in the ten cities. It is clear how vehicles in some cities are much more utilised than in
others, even 2–3 times more. It is also interesting to note that the vehicle utilisation rate is
the lowest in the two cities (Copenhagen and Stockholm) where the service has been shut
down months after we had collected this dataset. Remarkably, in Turin and Vienna there
is quite a lot of variability in the utilization rate. This is due to vehicles being injected or
removed from the system during the data collection period.



Boldrini et al. EPJ Data Science             (2019) 8:7 Page 9 of 24

Figure 2 Utilisation rate for vehicles in the shared
fleet. The boxplots compactly display the
distribution of the utilisation rate across the cells of
the ten cities

4 Demand characterisation through sociodemographic indicators and urban
diversity metrics

In this section we focus on the demand, i.e., on the number of pickup requests observed in
the different areas of a city, and we investigate how they are related to sociodemographic
and urban fabric indicators. We discuss these indicators (which are the explanatory vari-
ables for our model) below, together with a brief description of the spatial unit of analysis
considered in this section.

Sociodemographic data: Sociodemographic indicators characterise the population in
the different areas of a city. For this analysis, we need a granularity finer than city level.b

We were able to find open census data with the desired spatial granularity for the cities
of Florence, Milan, Rome, and Turin. For their analysis, we focus on indicators related to
the marital status, age group, educational attainment, employment status, and commut-
ing habits. The census data are obtained from the Italian National Institute for Statistics
(ISTAT) and correspond to the 2011 Italian Census.c

Urban fabric data: The wealth of activities (cultural, commercial, recreational, etc.) tak-
ing place in a specific area is characterised using information about the Points of Interest
(PoIs) collected from the location-based social network Foursquare.d When a user enters
a new PoI, they are prompted to enter one of the first-level categories defined by the plat-
form, which are Arts & Entertainment, College & University, Event, Food, Nightlife Spot,
Outdoors & Recreation, Professional & Other Places, Residence, Shop & Service. We do
not consider the category Event because events are generally limited in time, hence they
typically do not overlap with our period of observation of the car sharing dynamics. Us-
ing this information, the urban fabric is characterised computing the number of PoIs (per
category and overall) in each area. We also include a measure of the diversity of the urban
fabric in an area by exploiting the concept of venues entropy introduced in [47]. The venue
entropy of an area a is obtained as:

e(a) = –
∑

c∈C

nc(a)
n(a)

× log

(
nc(a)
n(a)

)
, (2)

where C is the set of first-level Foursquare categories, nc(a) denotes the number of PoIs
of category c in the area, and n(a) is the total number of PoIs in a. Intuitively, the entropy
measures the uncertainty in predicting the category of a venue taken at random from the
area, so the harder the prediction, the greater the diversity.

Spatial unit of analysis: We are constrained to use the smallest census area for
which data are provided. In case of census areas that only partially cover the car
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sharing operation area, we consider the polygon resulting from their intersection and
we rescale the sociodemographic indicators according to the percentage of overlap-
ping. In order to have consistent estimates of the indicators inside each unit of anal-
ysis, we discard the census areas that overlap for less than 20% with the operation
area.

The pickups events, the PoIs and the entropy in the spatial units of analysis for the four
cities are illustrated in Fig. 3.

Figure 3 Map of number of pickups, number of PoIs, entropy, residuals of rescaled pickups and entropy,
residuals of rescaled pickups and PoIs in Milan, Rome, Turin. The residuals are computed after rescaling the
variables in range [0, 1], then subtracting. Intuitively, they correspond to the deviation from perfect correlation
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4.1 Explanatory analysis
Methods: We investigate the relation between the total number of pickups (y) and the in-
dicators discussed above (which we denote with xk) using a multivariate linear regression
model of the form:

y = β0 + β1x1 + · · · + βjxj + ε, (3)

where β0 . . .βj are the unknown parameters and ε is the error term. As expected for the
kind of indicators that we are considering, multicollinearity is present in the data. In order
to mitigate its negative effects, we use Lasso shrinkage [48] to estimate the coefficient of
our linear regression.e Another advantage of Lasso is that it also perform subset selection,
whereby a reduced set of predictors that have the greatest effect on the response y is se-
lected. In short, Lasso minimizes the residual sum of squares subject to the sum of the
absolute value of the coefficients being smaller than a constant.

In standard linear regression, significance tests are used to test the statistical reliability
of the rejection of the null hypothesis (i.e., that a coefficient βk is zero). Recently, a signifi-
cance test for the Lasso regression has been proposed [49], that factors in the selection bias
related to the subset of selected predictors.f We will use this significance test to provide
the p-values for the coefficients of our regression.

As for the predictors that are skewed, we handle them applying a log transformation.
Results: The cities for which we were able to obtain census data with the required gran-

ularity are Milan, Florence, Rome, Turin. For Florence, the census areas with a significant
overlap with the operation area were to few to get statistically meaningful results, so we
also discarded this city. The Lasso regression results for the remaining Italian cities are
shown in Table 4.

In all Italian cities (Table 4), an high educational attainment in a certain area is signifi-
cantly associated with an increased demand for car sharing in that area. Vice versa, a low
educational attainment is associated with lower demand in both Rome and Turin. This is
largely in agreement with the findings from survey data discussed in Sect. 2.1: car shar-
ing users tend to be better educated than the general population, and this signal is strong
enough to be detected by the correlation between the demand and the demographic com-
position of neighborhoods.

Regularly commuting outside the reference municipality correlates negatively with car
sharing demand (Milan, Rome). This is due to the fact that car sharing vehicles cannot be
parked outside the operation area, hence they are not suitable for this type of commuting.
They would be suitable, though, if paired with local public transport, using car sharing as
a first/last-mile solution. This does not seem the case for Milan and Rome (the presence
of transport facilities is not affecting the demand). It might be the case for Turin, as com-
muting outside the municipality is not considered a good predictor of the demand while a
certain effect of the presence of transport facilities is detected. However, this effect is not
statistically significant, hence this conclusion cannot be drawn from the data at hand. Our
analysis seem to confirm the complex relationship between free floating car sharing and
public transport discussed in Sect. 2.1: the synergy or friction between the two could be
heavily dependent on local characteristics. An ad hoc analysis of this relationship would
be an interesting follow-up work of the current investigation.

The marital status and age never correlate with the car sharing demand in the cities
under study. The latter result is in contrast with the findings based on survey data, where
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Table 4 Lasso regression for Italian cities. Each cell contains the coefficient estimated by Lasso
regression. Statistical significance is reported as (***) = p < 0.001, (**) = p < 0.01, (*) = p < 0.05,
(.) = p < 0.1

Predictors Coefficients

Milan Rome Turin

Total population – – –
# unmarried – – –
# married – – –
# separated – – –
# widows – – –
# divorced – – –
Age < 5 – – –
Age 5–9 – – –
Age 10–14 – – –
Age 15–19 – – –
Age 20–24 – – –
Age 25–29 – – –
Age 30–34 – – –
Age 35–39 – – –
Age 40–44 – – –
Age 45–49 – – –
Age 50–54 – – –
Age 55–59 – – –
Age 60–64 – – –
Age 65–69 – – –
Age 70–74 – – –
Age > 74 – – –
# with university degree 0.22315 (***) 0.13065 (***) 0.22787 (***)
# with high school degree – – –
# with middle school diploma – – –
# with primary school diploma – –0.10589 (.) –0.08575 (***)
# literate – – –
# illiterate – – –
# employed – – –
# unemployed – – –
# stay-at-home – – –
# students – – –
# other situations outside workforce – – –
# commuting inside the municipality – – –
# commuting outside the municipality –0.1054700 (***) –0.02632 (*) –
# getting money – – –
# PoIs – – –
PoIs entropy – 0.19928 (***) –
# Arts & Entertainment – – –
# College & University – – 0.04625
# Food – 0.24642 (*) –
# Nightlife Spot 0.2224 (**) 0.13826 (.) 0.28672 (***)
# Outdoors & Recreation 0.17047 (***) 0.08842 0.04746
# Professional & Other Places 0.17197 (*) 0.26091 0.26261
# Residence 0.12921 (**) – –
# Shop & Service – – –
# Travel & Transport – – 0.02488

age always played a significant role in the profiling of car sharing users. One explanation
could be that the age-related signal is weaker than the education-related one. Then, due
to collinearity effects, the explanatory power of age is not considered sufficient by the
Lasso. Another explanation is that age alone has never been explanatory, and its presence
has always been due to its correlation with higher education attainments (in most OECD
countries, young people are more educated than the elderlyg).
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In terms of urban fabric indicators, the presence of nightlife activities is associated with
increased demand in all three Italian cities, while the presence of outdoor and recreational
activities, as well as professional PoIs and residences, have a statistically significant effect
in Milan only. Thus, leisure seems to be the main motivation behind car sharing trips in
the three cities. Work-related trips are significant only in Milan. When comparing these
results with the survey-based findings summarised in Sect. 2.1, no clear trend emerges.
While leisure and work trips are a common finding, the signal associated with shopping
activities goes completely undetected in these three cities.

5 Demand forecasting
In this section, we focus on the elements that influence the short-term behaviour of a car
sharing system and we exploit them to forecast the demand. As we are interested in a finer
spatial granularity (e.g. block level), we depart from the census areas used in the previous
section. We thus need to identify a meaningful spatial unit to define car availability in a
given area. In fact, differently from station-based car sharing, in free floating car sharing
there is no natural “aggregation” point for vehicles, which can be freely picked up and
dropped off anywhere within the operation area. We can still perform a spatial analysis of
car sharing usage by dividing the operation area into smaller cells and studying what is the
behaviour, over time, in each of these cells. In this work we consider cells with side length
500 m, which is the maximal walking distance typically accepted by car sharing users [28,
50].

Demand predictability is one of the crucial aspects for every transportation system. In
car sharing, in particular, it is of utmost importance for vehicle redistribution, whose goal
is in fact to proactively move vehicles in order to address the future demand. In [29], com-
paring the time series of empty cells over time against that of available vehicles, we have
shown that there typically a lot of empty cells but at the same time there are also a lot of
available vehicles. This situation hints at a strong concentration of vehicles in certain areas,
vehicles that could be proactively moved to where the customers most need them. Vehicle
redistribution is typically performed periodically (e.g., every hour) and can be represented
as a continuous cycling between three phases: (i) the forecast phase, when the expected
pickups and drop-offs during the next relocation window are predicted; (ii) the selection
phase, when the areas with vehicle surplus and vehicle deficit are identified and matched;
and (iii) the dispatching phase, when the relocation workforce is assigned the previously
defined relocation tasks [28].

Our goal in this section is not to develop a new custom-built method for demand predic-
tion in car sharing systems, but rather to compare state-of-the-art solutions that belong
to different forecasting approaches (see Sect. 2.2 for the discussion on existing methods)
in order to understand their performance in the ten cities under study. Indeed, while prior
work on demand prediction has focused on individual cities, it is important to assess the
robustness of the most representative methods to cope with the heterogeneity of travel
behaviours and urban fabric. The target audience of this analysis are researchers working
on designing optimised transport models for car sharing who might benefit from knowing
what is the best, off-the-shelf, approach to prediction, so that they can focus their efforts
on optimising the selection and dispatching phase discussed above. Similarly, third-parties
developers will benefit from this type of analysis. For example, one could think to set up
a service (similar in vein to OpenStreetCab [51], whose goal is to provide the best option
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price-wise between Uber and NYC taxies for a given trip) whereby the most reliable car
sharing service is recommended (e.g., one that guarantees that a car will be available in
the evening when one drives back home). Third-parties apps will most likely have access
only to the public data made available by the car sharing operators (similar to the data we
are dealing with).

Problem definition: The goal of demand prediction is to establish the vehicle deficit/
surplus at the cells. It can be described using the general formula we presented in [41],
which we discuss hereafter in a simplified version. If we denote with T the interval at
which relocation is performed, every T minutes the car sharing operator will compute,
for each cell i, the expected balance b̂i of vehicles at cell i for the next T minutes, which
can be described as follows:

b̂i = vi + ˆdropi – ˆpicki, (4)

where vi is the number of cars currently parked at station i, while ˆdropi and ˆpicki are,
respectively, the forecast number of drop-offs and pickups in the next time interval. Please
note that vi is a known quantity as it photographs the current situation at cell i. Instead,

ˆdropi and ˆpicki have to be estimated from what has happened in the past.h In the following,
we show how statistical learning can help fill this gap and thus close the relocation cycle.

Let us focus on a tagged cell i belonging to the set of all cells C . We denote the set of
days in our observation period with D. Then, we divide each day d ∈D in bins of length T
(i.e. we discretize time). The prediction problem at hand is a typical one: we have historical
data (a set of N observations) about pickup and drop-offs at cell i in each bin t for each day
in D. We have to predict what will happen in each bin of the next days. In the following,
we use the general term event to denote either pickup or drop-off events.

Features: For each cell i, we extract the following features for prediction:
• number of events e(i,d,t) observed in cell i at time t of day d
• the time of the day (corresponding to bin t)
• the day of the week (Sunday, Monday, etc.)
• whether the day is a weekday or not
• average number of events ê(i,d,t) observed at bin t of day d in the neighbouring cells

(we consider 2-hop neighbours only).
Methods: We use the first 80% of the days in the dataset for training, and we predict the

remaining 20%.i We set the time window T to 1 hour, implying that we want to forecast
pickups and drop-offs happening in a one-hour time frame. We only consider cells that
have more than 30 events during the observation period. Then, we run the prediction
algorithms and we measure the prediction error in terms of Root Mean Squared Error
(RMSE).

We now define a set of relevant prediction techniques to be evaluated on the datasets at
hand. It is important to point out that car sharing operators do not the disclose any detail
on their approach to demand prediction. Thus, comparing against state-of-the-art indus-
trial benchmarks is not an option. The first two solutions that we consider are simple base-
lines based on historical averages/medians. With regards to our discussion in Sect. 2.2,
the third one is representative of the class of time series prediction. Then, we pick two
approaches for the machine learning category: neural networks (which have been already
used in the literature for car sharing [24–26]), and Random Forest (which has been shown
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to be extremely effective when applied to bike sharing booking predictions [31, 32]). Fi-
nally, we test a technique in the custom forecasting category, specifically the one proposed
in [28]. In the following we provide a description of each technique.

Prediction based on Historical Average (HA): this prediction function returns the aver-
age number of events observed in the same time window across different days. In other
words, the predicted number of events ŷt at a certain time t in the future is obtained as
ŷt = 1

|D|
∑

d∈D e(i,d,t). As car sharing typically exhibits marked differences between week-
days and weekends [20], we also test a version of the algorithm (denoted as HA+) that
distinguishes between working days and weekends. A similar function has also been used
as benchmark in the related literature on bikesharing forecasting [32, 33].

Prediction based on Historical Median (HM): the prediction function returns the me-
dian number of events observed in the same time window across different days, i.e.,
ŷt = mediand∈T (e(i,d,t)). This function is expected to perform well in cases where the dis-
tribution of pickups/drop-offs is highly skewed. As for the previous algorithm, we also test
a version (denoted as HM+) that distinguishes between working days and weekends.

ARIMA: the Autoregressive Integrated Moving Average technique is a popular time se-
ries forecasting method. It is a generalisation of the ARMA model used in [22, 33]. Typi-
cally, ARIMA models are denoted with ARIMA(p, d, q), where p is the order (number of
time lags) of the AR component, d is the degree of differencing, and q is the order of the
MA component. Here we use the seasonal version of the above ARIMA model, estimating
the parameters for both the non-seasonal and the seasonal component (this allows us to
detect cyclic behaviour, if it exists). We remind that in a seasonal ARIMA model, seasonal
AR and MA terms predict the target variable using data values and errors at times with lags
that are multiples of S (the span of the seasonality). For each cell the best configuration
of the ARIMA parameters is selected according to their Corrected Akaike Information
Criterion (AICc) value, using the auto.arima function of R’s forecast package. The
search range for the parameters is the default one in theauto.arima function. Being this
a time series method, only the temporal information of each observation and the actual
observed values are fed to the model.

Random Forest (RF): tree-based learning method that aggregates the prediction results
of several decision trees obtained by randomly selecting, each time, only a subset m of the
original p features (those described in the features section above). In order to select the
most appropriate m, we used 5-fold cross validation and we varyj m in {2, 4, 5}. We use the
implementation in the R package randomForest, together with the caret package for
training and prediction.

Neural Network (NN): relying on the same settings as in [23], we use a single layer per-
ceptron with as many neurons in the input layer as the features described above, one hid-
den layer (searching for the best number of neurons between 1 and 30), single output neu-
ron, backpropagation, hyperbolic tangent activation function, linear output function. Cat-
egorical features have been represented using dummy variables. Then, input and output
data were scaled to the range [–1, 1], which is the sensitive range of the hyperbolic tangent
activation function. We rely on the implementation in R packageRSNNS, together with the
caret package for training and prediction. Parameters selection is again performed using
5-fold cross validation.

Algorithm in Weikl and Bogenberger [28] (WEIKL): one of the very few custom proposals
in the literature on car sharing, the rationale of this algorithm is to represent each timeslot
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of each day through a vector, whose components are the number of events at each cell dur-
ing the timeslot. Let us focus on a tagged timeslot t. These vectors describing the spatial
demand for timeslot t across each day make up a matrix of size |C|×|DT | (where C denotes
the set of cells andDT denotes the set of days in the training set). The |C|-dimensional rep-
resentation of each day is then simplified using Principal Component Analysis, and only
the first two principal components are retained. This two-dimensional description of the
days is then clusterised using k-means, in order to group together days featuring the same
demand behaviour. In the original paper, how the optimal number of groups is obtained is
not specified, so we decided to rely on the gap statistic [52], a state-of-the-art solution that
is able to handle also the single-group case (i.e., to detect when the optimal choice is to
not split in groups). Once this has been done for all timeslots, a so-called from-to matrix
is built, computing the probability that days in a certain group gi in timeslot t would be in
group gj in timeslot t + 1. Using this from-to matrix, it is possible to compute the demand
variation from a timeslot to another for each group. This concludes the training phase of
the algorithm. In the prediction phase, the demand in timeslot t – 1 is mapped into one
of the groups computed in the training phase (by closest centroid matching). Then, the
number of forecasted events for timeslot t is obtained from the computed expected de-
mand variation for the group. Please note that in [28], each day was divided in timeslots
of non-uniform size. For fairness with the other prediction algorithms, we use timeslots
of fixed size T . We have implemented this method in R.

Results: The results are shown in Figs. 4 and 5, for pickups and drop-offs respectively. For
most cities and for all algorithms, the error is small, with forecasts off, on average, by less
than one drop-off/pickup for the vast majority of cells. However, there are a few cells for
which the prediction error is high. After an in-depth analysis of the nature of these cells,
we discovered that they are typically in very busy areas (e.g. near the airport), where both
the high volume of traffic and the bustier nature of arrivals and departures may explain
this variability. Also, the RMSE for pickups tends to be slightly higher than for drop-offs. In
terms of which prediction algorithm works best, Fig. 6 shows that Random Forest provides
the most accurate predictions for the vast majority of cells. The WEIKL algorithm is the
second best, but its performance is very close to that of the NN approach and, surprisingly,

Figure 4 Box plot of RMSE for pickups in the 10 cities (1 hour time window)
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Figure 5 Box plot of RMSE for drop-offs in the 10 cities (1 hour time window)

Figure 6 Best predictors (1 hour time window). The
y-axis shows the number of times, over all
predictions tasks, that each predictor has
outperformed the others

to the simple Historical Average. HA+ and HM+, the versions of HA and HM algorithms
that take into account the difference between weekdays and weekends, do not outperform
in general their simpler counterparts. ARIMA, used also in [22] for forecasting car sharing
demand, provides consistently the worst predictions.

In Fig. 7, in order to showcase the main strengths and weaknesses of the prediction tech-
niques used, we focus on a tagged cell (specifically, on one for which the error is generally
large) and we plot the time series of the predicted drop-offs (black curve) against the ob-
served drop-offs (blue and red, in order to distinguish between weekdays and weekends).
For the sake of readability, we consider one strategy per class of prediction approach: HA
for the simple baselines, ARIMA for the time series forecasting class, RF for the machine
learning approaches, and WEIKL for the custom solutions. The ARIMA model tends to
replicate the same daily patterns across all days in the test set, since the ARIMA model is
not able to capture multiple seasonalities, which are instead present in the data. By using
predictive models that explicitly handle these multiple seasons (such as [53]), the quality
of prediction could be significantly improved. A similar problem seems to hold for HA: it
tends to replicate a “model day”, which is always the same. Instead, the predictions pro-
vided by the Random Forest algorithm are the most flexible ones, as they seem to adapt
individually to each day. However, despite this flexibility, there seems to be an inherent
variability in certain cells in the datasets (Figs. 4–5) that makes prediction difficult. The
tagged cell considered here is also useful to illustrate the weakness of the WEIKL solu-
tion. Since it groups together many cells to extract a typical behaviour of the system in a
given timeslot, the cells with a small number of events (which are many) tend to dominate
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Figure 7 Time series of predicted vs observed drop-offs for a tagged cell. RMSE: 2.44 (ARIMA), 1.83 (HA), 1.72
(RF), 3.56 (WEIKL). Black is used for the predicted time series, while blue and red are for weekdays and
weekends, respectively, of the test dataset

over the more active ones (like the tagged cell considered here). Thus, in these cases, the
predictions are significantly off with respect to the actual behaviour of the cell.

6 Spatiotemporal usage patterns
It is expected that cells in a car sharing system are used differently by the users, but how
many different usages can be identified? In order to answer this question, in the following
we carry out a classification of cells based on their usage pattern. To this aim, we focus
on the time series of vehicle availability in each cell and we measure how close this time
series is with what we observe in other cells. We measure the time series distance using the
Dynamic Time Warping (DTW) technique [54] (with Sakoe-Chiba band), then we cluster
cells based on their DTW-distance using Partition Around Medoids (PAM) clustering. For
each city, the optimal number of clusters is obtained using the silhouette method. In order
to be able to compare our time series, we discretise time into bins with a duration of 10
minutes. For each cell, we extract one availability value per bin by averaging the availability
in the bin in different days. In addition, in order to detect variation above and below the
average behaviour, we normalise the measured availability using the average availability at
the cell.

The results are shown in Fig. 8. The optimal number of clusters is 2 in Amsterdam, Flo-
rence, and Copenhagen, 3 in Berlin, Milan, Rome, Stockholm, Turin, and 4 in Munich and
Vienna. However, the fourth cluster, when present, is a very special cluster, composed of
just a single cell. This single cell is a very special one in the city ecosystem, and in both cities
where the fourth cluster is present, this cluster comprises the airport zone. If we plot the
availability time series within each cluster (Fig. 8, obtained by computing the average avail-
ability in the cells belonging to the cluster), it is striking to see that the clusters highlight
very characteristic cell usage. Some cells have above average availability at night and below
average availability during the day. Other cells have exactly the opposite behaviour. Finally,
there is a group of cells with an intermediate behaviour, where apparently no significant
difference in usage is detected over the whole day. It is easy to map this behaviour into
the “nature” of the area covered by the cell: people leave residential areas in the morning
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Figure 8 Time series of vehicle availability per cluster in the ten cities

and come back in the evening, while the opposite is true for commercial/business areas.
Similar classes were identified in [20] for station-based car sharing, and in [31] for bike
sharing. Figure 8 also highlights the outlier behaviour of the airport zone (which consti-
tutes the fourth cluster, when available). Airports in Munich and Vienna see a huge vari-
ation in availability; however, the behaviour of their time series is simply a scaled version
of the commercial/business pattern discussed before. Due to the magnitude of the airport
clusters’ time series, the behaviour of the other clusters of Munich and Vienna is barely
visible in the plot. If we zoomed in, we would see the typical patterns that can be seen
more clearly in cities with no airport within the operation area.

Based on the above discussion, we can associate each cluster with the trend in its cor-
responding availability time series. Thus, we identify four main behaviours: cells with
mid-of-day availability peak, cells with night peak, cells with no significant peak, and cells
whose availability variations are much higher than in other cells. We use the labels day,
night, neutral, and high-intensity to refer to these four classes. In the following, we in-
vestigate to which extent the behaviour of cells is spatially autocorrelated. To this aim,
since cell labels are categorical, we use the Join Count statistics [55]. With this approach,
for each cell n, we count how many of its neighbouring cells belong to n’s class and we
compare this result with what would be obtained if classes were distributed uniformly at
random across cells. Since the high-intensity class comprises at most one cell per city, we
discard it from the analysis. The results for all cities are shown in Table 5. Cells exhibiting
an availability peak at night are spatially autocorrelated in all ten cities. Cells with a mid-
of-day peak are spatially correlated in all cities except for Florence and Copenhagen. Out
of the seven cities featuring neutral cells, the spatial autocorrelation is significant for only
three of them. We can conclude that, in general, the availability of vehicles in cells tends
to be spatially autocorrelated, hence neighboring cells tend to have shortage/abundance
of vehicles at the same time. This further motivates the use of vehicle availability informa-
tion in neighbouring cells for demand forecasting (RF and NN in Sect. 5 indeed rely on
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Table 5 Join Count Statistics. Column Count contains the total number of matches; column Exp.
(rand) contains the number of matches expected under random; Test Stat. contains the test statistics;
(†) denotes p-values greater than 0.05 (not statistically significant). Neighbour cells are obtained using
the Queen criterion (i.e., assuming moves like the Queen in a chess game); spatial weights are binary

City Cluster Type Count Exp. (rand) Test Stat. p-value

Amsterdam day 753 726.56 2.22 1.33e–02
night 132 53.13 12.40 1.25e–35

Berlin neutral 1623 1571.39 2.44 7.42e–03
night 501 295.93 14.81 6.38e–50
day 254 65.88 25.53 4.31e–144

Florence day 400 403.76 –0.33 6.29e–01(†)

night 109 86.40 2.95 1.60e–03

Copenhagen day 385 385.50 –0.05 5.22e–01(†)

night 86 59.11 4.37 6.18e–06

Milan neutral 837 793.31 2.82 2.40e–03
night 349 174.15 16.54 9.25e–62
day 89 10.18 26.01 1.92e–149

Munich neutral 613 588.51 1.64 5.10e–02(†)

night 221 98.37 14.37 3.95e–47
day 82 26.10 11.79 2.13e–32

Rome neutral 623 609.62 0.90 1.84e–01(†)

night 163 88.58 9.24 1.26e–20
day 265 75.74 25.09 3.35e–139

Stockholm neutral 192 198.33 –0.69 7.56e–01(†)

night 66 50.95 2.53 5.72e–03
day 22 9.13 4.60 2.10e–06

Turin neutral 422 408.32 1.26 1.04e–01(†)

night 152 100.44 6.61 1.96e–11
day 41 4.01 19.43 2.20e–84

Vienna night 372 231.90 11.83 1.29e–32
neutral 657 599.45 3.75 8.80e–05
day 85 18.59 16.45 3.90e–61

this information and their performance is quite good, with RF being the most performing
prediction algorithm overall).

7 Locating cleaning and maintenance areas
A critical operational aspect for car sharing is how to perform cleaning and maintenance.
When not done properly, it may even be a critical factor of the service shutdown, as in the
case of Parisian car sharing Autolib.k In order to perform cleaning and maintenance, the
car sharing workforce is typically remotely dispatched to collect vehicles that are in need of
either. However, moving workers around is expensive, and more efficient solutions could
be found based on the vehicle usage in the city. As a case study, in the following we discuss
how to identify potential service areas within the operation area. A potential service area
is a location vehicle pass by with very high probability. A workshop could be deployed in
this area, and this would make cleaning and maintenance operations much more efficient.

We can use our dataset to understand if these potential service areas exist or not in the
cities covered by the car sharing service under study. To this aim, we define a reference
window W , corresponding to the accepted tolerance for taking out a vehicle for mainte-
nance. Based on data from active car sharing operators, we assume that reasonable values
for W are between 15 and 30 days. Then, for each cell, we count the number of distinct
vehicles seen by the cells during W . Figures 9 and 10 show the results for the top three
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Figure 9 Potential service areas. Tolerance window: 30 days

Figure 10 Potential service areas. Tolerance window: 15 days

cells in each cities, i.e., the three cells that see the highest number of distinct vehicles dur-
ing two different time windows (W = 30 and W = 15 days, respectively). Assuming that a
(somewhat generous) threshold of 50% vehicles would be acceptable for the car sharing
operator to justify the opening of a workshop in the area, all cities with the exception of
Florence would accomodate three workshops satisfying this requirement when W = 30.
The scenario W = 15 is by far more challenging: six cities would be able to open at least
one workshop, but only one city could open two and three. The top ranking cell for cities
whose operation area covers the airport is always the cell that includes the airport, which
thus becomes a strategic asset in car sharing operations, in addition to being a huge gen-
erator of car sharing traffic.

8 Conclusions
In this work, we have collected web-based data about free floating car sharing in 10 Euro-
pean cities, cities that are heterogeneous both in terms of car sharing success and mode
split. We have studied how the car sharing demand relates to sociodemographic and urban
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indicators, showing that the car sharing demand is positively correlated with high educa-
tional attainment and nightlife activities, while being negative correlated with the per-
centage of people commuting outside the municipality. These findings both confirm and
extend the results in the related literature obtained from survey data. Then, focusing on
the predictability of future car sharing requests, we have shown that they can be forecasted
quite accurately using state-of-the-art prediction algorithms, and we have highlighted the
very good performance of Random Forest as predictor. Finally, we have proposed a strat-
egy for selecting the area in which maintenance facilities should be deployed, and we have
shown how the airport zone can become a strategic asset for car sharing operators, due to
the fact that the high volume of traffic generated by the area makes it extremely convenient
to deploy cleaning and maintenance facilities there.
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Endnotes
a Only for these cities we were able to find fine-grained geospatial census data significantly overlapping with the car

sharing operation area.
b Please note that EU countries are legally bound to provide census data to the Eurostat database at most at the level

of NUTS 2 (regions). The actual database
(https://ec.europa.eu/eurostat/web/population-and-housing-census/census-data/database) contains data up to
NUTS 3 level (provinces) but this is not enough for our purposes. For this reason, we resorted to individually
checking the countries’ official institutes for statistics.

c https://www.istat.it/it/archivio/104317
d Through the Foursquare Places API it is possible to browse the venues in a certain geographic area. Since the

standard API returns at most 50 venues per input area, each city is split into several browsing areas, whose size is
properly dimensioned to ensure that all the available venues are acquired.

e We use Lasso regression as implemented in the R package glmnet [56], using 10-fold cross validation for
parameter estimation.

f As an example, running an Ordinary Least Square linear regression on the selected subset of predictor and
calculating the p-values associated to the coefficients would yield a very optimistic estimate of the significance, due
to the fact that the subset of predictors is not selected independently of the data.

g https://data.oecd.org/eduatt/population-with-tertiary-education.htm#indicator-chart.
h Note also that, for the sake of clarify, in Equation 4 we are intentionally neglecting the contribution of relocated

vehicles that have yet to arrive at the cell from the previous relocation interval. This does not affect the forecast
results discussed in this section because this number would be known in advance anyway and, thus, would not be
part of the prediction process.

i Please note that standard k-fold cross validation cannot be performed with time series because time series data are
not independent across time. The approach used in this paper is the same used in [32].

https://www.istat.it/it/archivio/104317
https://ec.europa.eu/eurostat/web/population-and-housing-census/census-data/database
https://www.istat.it/it/archivio/104317
https://data.oecd.org/eduatt/population-with-tertiary-education.htm#indicator-chart
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j Note that the set of initial features (p = 3) is expanded after applying OneHot encoding. For example, the
categorical day of the week is split into 6 binary features.

k https://www.thelocal.fr/20180619/wheels-set-to-come-off-paris-autolib-electric-cars
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