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(QCR), Harmad Bin Khalifa University, A multi-modal transportation system of a city can be modeled as a multiplex network
Doha, Qatar with different layers corresponding to different transportation modes. These layers

include, but are not limited to, bus network, metro network, and road network.
Formally, a multiplex network is a multilayer graph in which the same set of nodes are
connected by different types of relationships. Intra-layer relationships denote the
road segments connecting stations of the same transportation mode, whereas
inter-layer relationships represent connections between different transportation
modes within the same station. Given a multi-modal transportation system of a city,
we are interested in assessing its quality or efficiency by estimating the coverage i.e, a
portion of the city that can be covered by a random walker who navigates through it
within a given time budget, or steps. We are also interested in the robustness of the
whole transportation system which denotes the degree to which the system is able
to withstand a random or targeted failure affecting one or more parts of it. Previous
approaches proposed a mathematical framework to numerically compute the
coverage in multiplex networks. However solutions are usually based on eigenvalue
decomposition, known to be time consuming and hard to obtain in the case of large
systems. In this work, we propose MUME, an efficient algorithm for Multi-modal
Urban Mobility Estimation, that takes advantage of the special structure of the
supra-Laplacian matrix of the transportation multiplex, to compute the coverage of
the system. We conduct a comprehensive series of experiments to demonstrate the
effectiveness and efficiency of MUME on both synthetic and real transportation
networks of various cities such as Paris, London, New York and Chicago. A future goal
is to use this experience to make projections for a fast growing city like Doha.

Keywords: Multiplex networks; Robustness; Resilience; Coverage; Random walker;
Multimodal transportation; Random and targeted failures

1 Introduction

In the past years scholars have increasingly realized that urban infrastructure modeling
can not be addressed in a decoupled way: transportation networks in big cities are natu-
rally multi-modal, and as such commuters use different modes to move around the city.
This implies that congestion in surface (car) commuting has large effects on other modes
of transportation, e.g., bus or metro; the other way around, incidences in the metro system
(e.g., temporary power failure in a station) will have severe consequences on the bus and

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1140/epjds/s13688-018-0139-7
http://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-018-0139-7&domain=pdf
mailto:abaggag@hbku.edu.qa

Baggag et al. EPJ Data Science (2018) 7:14 Page 2 of 21

private car systems. Provided that many cities—and particularly large metropolis—oftfer
open data from all sorts of remote sensing devices, it is tempting to dive deep in those
data so as to characterize such interwoven layers, and quantify their mutual effect on each
other. In this paper, however, we intend to take one step back and address the question
from a theoretical perspective to (i) represent the multi-modal transportation system as
a multiplex network; (ii) mathematically characterize the random walk coverage of this
multiplex, and (iii) assess the robustness of such coverage when the system is confronted
with failure. This strategy—setting a theoretical framework—provides an anticipatory un-
derstanding, for instance to avoid possible, unforeseen negative side-effects of urban plan-
ning decisions. Also from an urban planning point of view, our proposal ultimately opens
the path for an holistic route ranking, helping authorities to prioritize certain navigation
strategies over others, in particular during mega events.

Regarding point (i) above, our work adds to the literature on multiplex networks, which
has gained a lot of momentum in the last five years. As research on complex systems ma-
tured, it became essential to move beyond simple graphs and investigate more complicated
(but more realistic) frameworks. At first sight, the expansion from “monoplex” to multi-
plex may be hailed as an easy one—from a network to a “stack” of networks. However,
things turned out to be more complicated, and a generalization of “traditional” network
theory had to be developed, e.g., see [1]. To begin with, an adjacency matrix can no longer
encode the layer-to-layer interactions of multiplex systems, and rather supra-adjacency
matrices or adjacency tensors enter the scene, e.g., see [2—4]. This in turn modifies all
the underlying algebra that lays at the base of monoplex network analysis, both regarding
static descriptors—degree, transitivity, eigenvector centrality, modularity, etc. [5-8]—and
dynamic processes [9], such as mobility on urban multiplexes. The latter—which is the fo-
cus of this contribution, see next Section—has been tackled only recently [10-12].

Needless to say, random walk dynamics—and its neighboring problems, e.g., Mean First
Passage Time [13, 14] and network coverage [15, 16]—have a long tradition in network
theory [17]. We here resort on De Domenico et al. [18], which offers the first theoreti-
cal generalization of random walks to the multiplex framework, as applied to navigability
processes on multi-modal transportation networks.

Finally, the concept of robustness has been central to network theory from the early
2000s [19, 20], because of its applied significance together with a long-standing tradition
under the topic of percolation theory in Statistical Physics [21, 22]. Closer to urban ques-
tions, Arcaute et al. [23] have relied on percolation to explore the limits of regions and
cities; Li et al. [24] propose an interesting dynamical percolation approach to unveil com-
plex commuting dynamics in cities; and finally other works [25, 26] focus on the problem
of infrastructural robustness and city design from the idea of progressive structure fail-
ure (removal of randomly chosen edges). More recently, Romero et al. [27] studied the
impact of external stress on the structure of networks applied to social media platforms;
and Baggio et al. [28] looked at the robustness of multiplex networks in a social-ecological
context. In the multilayer framework, percolation transitions have also been studied from
a theoretical perspective, e.g., see [29].

This paper is organized as follows. In the next section,we present the data model used
to represent a multi-modal transporation system of a city, and formalize the problem of

efficient computation of the coverage using random walkers. Then we introduce the Multi-
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model Urban Mobility Estimation algorithm; and in the validation section, we present the

experimental evaluation of the model; with a conclusion at the end of the paper.

2 Data model and problems

Many physical realities can be modeled as sets of interconnected entities; and multi-layer
networks are used as a representation of these complex systems. We therefore observe
many dynamical processes being studied on top of these networks, such as diffusion pro-
cesses [30, 31], synchronization [32, 33], percolation [34, 35], etc. We use, in particular,
multiplex networks to provide the comprehensive conceptual framework, see e.g., [1, 18,
30, 36—43], and random walks to study the mobility of commuters within a multimodal
transportation network in a city. This will allow the development of optimal navigation

strategies.

2.1 Multiplex networks
Given a set of L layers, each representing a type of relationship and containing N nodes.
The relationship is represented by an edge and can be anything depending on the complex
system, e.g., in social networks, it can be “friendship” on one layer such as Skype and
“professional” on another layer, such as LinkedIn. For multimodal transportation systems,
the nodes represent the components of the complex system, e.g., bus stations in the first
layer, and metro stations in the second layer, etc. Even though the layers are different from
each other, the commuters use both of them to move in a large city, and therefore it is
important to represent their mobility by taking into account the coupling between layers.
A multilayer network is a pair M = (G,C) where G is a finite sequence of (directed or
indirected, weighted or unweighted) intra-layer graphs G* = (V*,£%), and C is the set of
inter-layer connections between nodes of different layers G* and G#, i.e.,

C=1{Ep SV x VP |a#B}. (1)

A multiplex network is a special type of multilayer network in which V! = V2 =... =Vl =
V), and the only possible type of interlayer connections are those in which a given node is

only connected to its counterpart nodes in the rest of layers, i.e.,

Eap =\ {[i0),i(B)] | ile) € V*,i(B) € VP, # B}. )
o, B

Here, a node-layer i(o) means that node i participates in layer o.

In other words, multiplex networks consist of a fixed set of nodes connected by differ-
ent types of links, see Fig. 1. The paradigm of multiplex networks is social systems, since
these systems can be seen as a superposition of a multitude of complex social networks,
where nodes represent individuals and links capture a variety of different social relations.
In this study, we consider node-aligned multiplex networks, i.e., inter-layer connections
are “diagonal” in the sense that each node is connected only to its counterpart in the other
layers, and the inter-layer edges exist only between consecutive layers.

There have been some attempts in the literature for modeling multilayer networks prop-
erly by using the concept of tensors, e.g., see [6, 44]. In this study, we use proper matrix
representation, and therefore the supra-adjacency matrix of the multiplex network has the
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Layer 1 Layer 2 Layer 3

Figure 1 Example of a multiplex configuration. A three layer multiplex network showing the inter-layer and
intra-layer correspondences between different nodes

general form

(W@ L pan D2 D3 ... D) 7]
D@D w®@ + D2 D®3) . DRL
W= DB D®2) we +DB3)| ... DG 3)
: : : . DU-1L
| D@ D@ .~ |pHDjwd L i |

where W@ is the adjacency matrix of layer a, D®?) is a diagonal matrix such that dgﬁ is
the cost associated with the inter-layer edge [i(«), i(8)], and D® is a diagonal matrix such
that d7* represents the cost of staying in the same node and in the same layer.

Note that multiplex networks allow an easy integration of traversal times by adding
weights to the different edges of the network. Weights of edges in the same layer will
represent the time it takes to go from one station to another, whereas weights of edges
connecting the same station in two different layers represent the time it takes to transfer
from one mode of transportation to another. The weights of transferring can also take into
account the frequency of each line, which is not part of this study. However, in some cases,

frequency can be relevant in bus or rail networks.

Remark 1 The spectrum of the supra-adjacency matrix (and its associated supra-Lapla-
cian matrix) is directly related to several dynamical processes that take place on a multi-
layer network, such as the diffusion dynamics [45], and the guarantee of a unique station-

ary state of the Markov process, e.g., see [46].

Represented this way, multiplex networks encode significantly more information than
their single layers taken separately, since they include correlations between the role of the
nodes in the different layers. For example, a node that is a hub in the metro layer is more
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likely to be a hub in the bus layer. Therefore, the degree of nodes in the metro layer is
positively correlated with that of the bus layer. Negative correlations may also exist, when
the hubs of one layer are not the hubs of another layer.

One limitation of multiplex networks, when all lines of a transportation mode are put
in the same layer, is that they do not account for the cost of transferring between lines (at
the same stop), especially when the stop is represented with the same node in that layer.
However, there is a study by Aleta et al. that addresses this issue, see, e.g., [47].

2.2 Coverage by random walk

Random walks constitute a fundamental mechanism for many dynamics taking place on
complex networks, e.g., see [48]. To assess the urban mobility in this multiplex transporta-
tion system, we model commuters as random walkers and we determine the coverage of
the random walks, defined as the expected value of the number of steps to reach all nodes
in the transportation system, regardless of the layer, on a walk that started from any node-

layer j(a), i.e.,
C/(a) (r) = E[# steps to reach all nodes in the graph on a walk that starts at j(a)],

i.e., it is the expected value of the number of nodes in the network being visited at least
once in a time less than or equal to ¢, regardless of the layer, assuming that walks started
from any other node-layer in the network.

A random walk is a Markovian process [49], which means that the transitions between
states are historyless, i.e., the probability of transitioning to the next state depends only
on the current state, not on any of the other previous states. Moreover, at each time step,
the random walker has three options: the first one is to stay at the same node, the second
one is to move to other neighboring nodes on the same layer and the last one is to switch
to one of its counterparts on other layers, as illustrated in Fig. 2.

The mathematical model, used in this paper, is inspired from the study in [18], and was
clearly developed by us in [50].

Therefore, given a multiplex transportation system of N nodes and L layers, the discrete-
time master equation describing the probability of finding the walker in node-layer i(«),

at time (¢ + 1), can be written as, e.g., see [18, 50, 51]

N
Pie(t+1) = A5 piay () + ) AL pyen(0)
j#i

L L N
3 AL pin @ + DD AL pa(®) (4)
=1 B=1 j#i

which can be assembled in matrix form as P(t + 1) = AP(¢), where A € RN-XNL g the
transition supra-matrix (always assumed to be independent of time), and P € RM is a
supra-vector containing the probability of finding the walker at any node-layer i(«), such
that

T
P=[p/ p; - p;] and pu=[piwy Powy ‘' Prnw]’-
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" 1-Stay at the node
—— 2- Move to the other nodes in the neighborhood
------ 3- Switch to its counterpart node in the other layer

Figure 2 Random walk on a multiplex. An illustration of different possible moves available for a random
walker in a multiplex setting

For a classical random walk, the transition probability of moving from node-layer i(c)
to node-layer j(«), i.e., within the same layer «, or to switch to the counterpart of vertex i
in layer B, i.e., to node-layer i(8), is uniformly distributed. Therefore we have

aiy e

W lfl:]al'ldﬂ:()[,
we
- ifi#jand B =«

B kia+cio( ’
'AZ’ — (;??() ) ; (5)

! ifi=jan o,

Ki(a) +Ci(ar) / B

0 ifi#jand B #«,

where wi is the weight of the intra-layer edge [i(«),j(«)] and dg')s is the weight of the inter-
layer edge [i(@),i(B)], i.e., the cost to switch from layer « to layer B at node i, while dg;"
quantifies the cost of staying in the same node and in the same layer. These are the elements
of the matrices W@, D©“#) and D®® in W respectively.

The intra-layer strength of a node-layer i(«) is k), and ;) is the inter-layer strength

of node i with respect to its connections to its counterparts in different layers. They are
defined as

k,'(o,) = Z WZ- and Ci(w) = Zdzl)s,
jEN ) B

so that the total strength of node-layer i(«) is the sum, i.e., ki) = ki() + Ci(a)-

Remark 2 Since each node is coupled only with its counterparts in different layers, then,
only the elements of the type A‘;ﬂ are different from zero. Jumps to other nodes in the
other layers, as in Lévy random walks, are not allowed, and therefore Agﬂ =0fori+#jand

o #p.
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3 Mathematical analysis of the model
In matrix form, it can be shown that the discrete-time master equation (4) can be written
as the initial value problem,

£PO] =—(T - AP(),
P(¢ = 0) = P(0)

(6)

and without loss of generality, we assume that, at ¢ = 0, the random walker is in the first
layer at node-layer j(1), i.e., P(¢£ = 0) = Pj3)(0) then the initial value problem admits the
following solution

P(t) = exp [—t(I — A)]P/(l)(O), (7)
where exp [-£(Z — \A)] is the usual matrix exponential, i.e.,
o (-

exp t(l' .A) :ZTI_A)k’
k=0

Remark 3 It is easy to see that P;)(0) = [ejT o7 ... 0717 with e c RN being the canonical
vector, and 0 € RY is the vector of all zeros.

Theorem 1 Let IC be the diagonal matrix containing the total strength of all nodes, i.e.,
IC = diag(W1), where 1 € RN is the vector of all ones, then A = K2WK-2. Therefore,
the matrix (T — A) is the normalized supra-Laplacian of the multiplex network.

Proof The supra-Laplacian of the multiplex network is

L=K-W

NI»—A

= K3 (T-K WK H)K
Therefore, the matrix (Z - \A) is the normalized supra-Laplacian. d

The random walker can be at any layer, so let p;(£) be the probability to find the walker
in node i at time ¢, regardless of the layer, i.e.,

pilt) =Y piw =E PQ), (8)

where E; = [e] --- e/ ] € RN Since P(¢ + 1) = AP(t), and using Equations (8) and (7), we
get at time (¢ + 1) the following expression for p;(¢ + 1)

pilt+1) = E[ AP(1)
=E/ Aexp[-t(Z - A)]Pj1)(0). ©)

To determine the coverage, defined as in [18], let’s find an expression for the probability
8;;(t) not to find the walker in vertex i after ¢ time steps, assuming it started in vertex j,
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that is
8,8) = [1-p O] [[1 - pi(®)]- (10)
=1

From (10), we get the recurrence relation &;;(¢ + 1) = 8;;(¢)[1 — p;(¢ + 1)], thus leading to
the initial value problem

% [6:()] = =58, (t)E] Aexp [-£(Z — A)IPj1)(0),
8,j(t = 0) = 6;;(0),

(11)

with §;;(0) = 0 for j = i since the walker started in vertex j and the probability of not finding
it in the same vertex is 0. In the case of j # i, then §;;(0) = 1. The solution to the initial value
problem (11) is, see [18]

t
8;;(t) = 8,5(0) exp [-E/ BP;;y(0)] with B = Z AT (12)

=0

Therefore, the coverage is given by double averaging over all vertices the probability
[1 - (Si’]'(t)], i.e.,

N N

Ct)y=1- A% > " 58j(0) exp[-E[ BPj)(0)]. (13)

i=1 j=1

Theorem 2 The matrix B need not be formed explicitly, since only its action on the vector
P;1)(0) is needed, i.e., a matrix-vector product, therefore

BP;;)(0) = [Z A”l]Pj(l)(O)

7=0
=[A+ A%+ + AMP)(0)
= APj(l)(O) + A(Apj(l)(o)) +oet A(A e (AP/(I)(O)) e )

Moreover, since Pj1)(0) = [e/.T o7 ... 0717, then
AP;)(0) = [(A(L:N,j))" o7 ... o],

i.e., the jth column of A and we get the following recurrences
E[ AP;)(0) = A,j),

N
E[ AP;1)(0) = > " A(, £1).A(£1, ),

£1=1

N N

E[ A’Pj)(0) = ) Y Al 1) A6, £5) AlEa, ),

l1=14¢9=1
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N N N

ELA'P;1)(0) = > > Y " A, £2).A(ly, £2) A(l, £3) A(s,)),

£1=14€p=1¢3=1

ELAYR 000 =) ) Y AG ) AWl 6) Al £5) - AL, ).

SR Lt

Proof These relations can be proven easily the usual way of proving recurrences, i.e., val-
idate for the initial case, then assume it is correct for T and prove that it is still correct for
7 + 1. The details are skipped. g

Remark 4 The number of walks from node i to node j of length 7 is the entry on row i and
column j of the matrix A". Therefore the matrix B represents the total number of walks

from node i to node j, of any length less than or equal to (¢ + 1).

4 Resilience to failures and percolation

Significant progress has been made in understanding the percolation properties of multi-
layer networks. For example, it has been shown that dependency links can have a serious
impact on cascading failure events, in particular for interdependent networks. And, in
many multilayer networks, some nodes of a layer are interdependent on nodes in other
layers. A node is interdependent on another node in a different layer if it needs the other
node to function in order to function itself properly. When two or more networks are in-
terdependent, a fraction of node failures in one layer can trigger a cascade of failures that
propagate in the multilayer network. This can mean that a network of networks as a whole
may be more fragile than its constituent parts taken in isolation. A dramatic real-world ex-
ample of a cascade of failures is the blackout that affected much of Italy in 2003, where the
shutdown of power stations directly led to the failure of nodes in the Internet commu-
nication network, which in turn contributed to further breakdown of power stations, see
[52]. Also, the work of Brummitt et al. in [53, 54] shows the importance of considering
interconnected networks to better understand cascading failures. It is therefore critical to
consider interdependent network properties in order to design robust networks.

It is now clear that the robustness of multilayer networks can be evaluated by calculating
the size of their mutually connected giant component (MCGC) when a random failure
affects a fraction of the nodes in the system, see the pioneering work in [52]. The MCGC
of a multilayer network is the largest component that remains after the random failure
propagates back and forth in the different layers.

The MCGC is defined as the set of nodes i(«) that satisfy the following recursive set of
equations, see [55]

(a) atleast one neighbor j(«) of node i(«) in layer « is in the MCGC;

(b) all the interdependent nodes i(8) of node i(«) are in the mutually connected giant

component.

Network percolation theory has already been exploited in the urban context for pur-
poses other than the ones in this work, e.g., see [24, 56, 57]. With the road networks for
dozens of cities at hand, we can now proceed with the percolation dynamics in two dif-
ferent ways. Both of them share the idea of progressive structural deterioration [19, 20,
58], understood either as error or failure (removal of randomly chosen edges); or attack
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(removal of important edges, where “importance” can be quantified by some descriptor,
such as high betweenness of edges, high centrality of nodes, etc.) Note that in this work
we focus on bond percolation (the removal of edges) as opposed to site percolation (the
removal of nodes).

To quantify the robustness of the multimodal transportation system, we use percolation
theory [19] to describe the impact of edge failures in the multiplex on the coverage. We
iteratively remove edges from the multiplex and compute the new coverage of the resulting

network.

5 Computational approach

In [18], a numerical approach to estimate the coverage has been proposed. It is based
on the eigendecomposition of the normalized supra-Laplacian (Z — .A) € RN-XNE The
general form of the coverage has the following expression

N —iet
1 e -1
Ct)=1- 352 _6,(0) P[ PBTCIEDD C"J"“T]’
ij=1 eA® feA®

where C;;(¢) = EiTAVg P;(0) are constants depending on the vertex, the transition matrix,
the eigendecomposition, and the initial conditions. Each supramatrix V; is obtained from
products of the eigenvectors of the normalized supra-Laplacian, and A® and A* indicate

the sets of all null and positive eigenvalues of the normalized supra-Laplacian, respectively.

Remark 5 Any solution approach based on the eigendecomposition is time consuming
and hard to obtain, especially for large matrices. Therefore it should be avoided.

5.1 Proposed algorithm

The main kernel in computing the coverage is how to compute the exponent E [A +
A2 4ot .A”l]P/(O). For this, we propose the Multi-model Urban Mobility Estimation
(MUME) Algorithm 1. Therefore, the way the coverage is computed here results in a
tremendous saving in the computational time, as opposed to the eigendecomposition of
the (normalized) supra-Laplacian matrix (Z — .A) proposed in [18].

5.2 Complexity analysis

Floating point operation (flop) is a simple, machine-independent measure of algorithm
complexity. In multi-modal transportation networks, we usually have a small number of
layers, for example in our study, L = 2, since we consider a bus layer and a metro layer.
Hence, in the MUME algorithm, we have one matrix-vector product per iteration (Step 6)
whose count is <« 2N? flops, because of the sparsity of the matrix .4; and one addition of
2N -vectors (Step 7) whose count is 2N flops.

6 Experimental evaluation

The main objective of this work is to study urban mobility challenges in modern cities, as
well as the robustness and resilience of the complex transportation systems. Such work
can serve as a basis for an automatic comparative evaluation of transportation system ef-
ficiency of different cities. The multilayer nature of the proposed framework requires data
from different modes of transportation. However, it is found that not so many cities have
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Algorithm 1 Computing E/ [A + A? + - - - + A"*1]P;(0)
1: procedure COMPUTEEXPONENT(A, N, L, i,, £)
P;(0) < [e],T ol ... 07T
a < AP;(0) > jth column of A

a<a

fort < 1,tdo

2
3
4
5
6: a< Aa > 1 matrix-vector product per iteration
7 a<a+a > vector update
8 end for

9 exponent < 0

10: fora < 1,L do

11: exponent < exponent + a(i + (& — 1)N)

12: end for > exponent = E/a
13: end procedure

collected, cleaned, and made data about their transportation systems publicly available.
We thus limited our experimentation to four big cities: Paris, London, New York City, and
Chicago.

We experiment with random graphs of different natures to derive more generalizable
conclusions. In what follows, we present an overview of the data and the methods de-
veloped to produce the multiplex urban transportation network of every city from raw
data. We then summarize and discuss our results for both convergence of coverage and
robustness to failures.

6.1 Data

At the level of every city; we acquire, parse and combine GTFS (Google Transit Feed Spec-
ification)?® datasets of every transportation mode. Google Transit Feed Specification is a
format of data created to provide transit schedules and public transport information for
specific geographical location. It is a “standard” developed by Google in order to help pub-
lic transport agencies to publish and integrate their data with Google Maps. A typical
GTES feed includes information about multiple aspects of a transit system, such as stops,
routes, trips, and schedules. Needless to say, the availability of these datasets is a key re-
source to study the dynamics of the transportation systems, e.g., see [59-62]. In our study,
we use GTES datasets to represent the anatomy of the public transportation system in all
cities except London, and build a multiplex urban transportation network for every city.

In order to process and transform the combined GTEFS datasets to multiplex system, we
perform four tasks:

Merging GTFS dataset from different sources. Since the datasets come from various agen-
cies and transportation companies which have adopted different indexes, the first step to
reliably build transportation network after merging datasets is to re-index stop locations
to avoid any conflicts. To do so, we join stations spatially (using latitude and longitude
coordinates). We use text similarity matching techniques applied on stations’ names to
double check our results.

Identifying and extracting routes. As we are interested in identifying connected loca-
tions, we start by filtering occasional trips, such as trips during national holidays, etc.,
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from our dataset. Then, for each trip, we order stop locations based on departure time to
identify connected locations.

Transportation network as a graph. We construct a graph of every transportation net-
work in the city from the set of ordered stop locations per trip. Every set of these nodes
represent a path in the network. As a result, we obtain a network for each mode of trans-
portation in the city. As an example; for the case of Paris, the result of this step for both
metro and bus networks is illustrated in Fig. 3.

Building a multiplex network. In our study, we represent the transportation network as a
two-layer multiplex: Bus network and Metro network, as these two transportation modes
represent the most significant urban transportation modes. The nodes of each layer rep-
resent the stop stations (bus stations or metro stations). As our multiplex system has to
be ordinal and diagonal, we establish a connection (a link) between a node in one layer

(e.g., bus) and its counter-part in the other layer (e.g., metro). We adopted an assumption

2.6}

2.5}

2.4}

2.3}

2.2}

2.1}

48.6548.70 48.75 48.80 48.85 48.90 48.95 49.00

2.45|
2.40] .

2.35/ B ..’3:

2.30] : ( 4

2.25| .

2.20 48.80 48.85 48.90 48.95

Figure 3 Bus (top panel) and Metro (bottom panel) networks generated from merged GTFS files for the city
of Paris. We can clearly see that bus network covers a much larger area than metro network and is much
denser than it
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according to which two nodes in two different layers that are within a walking distance
radius (< 100 m) represent the same station (i.e, a station that provides a connection be-
tween the two transportation modes).

As stated in the modeling section, we assume that the transition probabilities are uni-
form at each node. That is, at each node, the random walker has the same probability to
move through all possible edges, including those connecting to other layers.

We eliminate the nodes from layer 1 (respectively: layer 2) that don’t match any node in
layer 2 (respectively: layer 1). We make sure to retain connectivity through the removed
nodes by connecting their neighbors recursively. Note that by doing so, we could end-up
with a network that has much more edges than the initial one. So, in order to build a mul-
tiplex network, we used a simplified approach by keeping the same number of stations at
every layer. We simply run a recursive algorithm to remove the nodes (stations) which do
not have a counterpart in the other transportation layer, however, we retained the con-
nectivity between the nodes. By removing the nodes, the algorithm increased the number
of edges between the different remained nodes. This is for instance the case of Paris Bus
network (see Table 1).

We apply the same process for each of the studied cities, and as a result, we obtain the
multiplex representation of the urban transportation for every city.

In the case of the city of London, we use both (1) OpenStreetMap (OSM)® and (2) The
National Public Transport Data (NPTDR).© OSM provides an updated map of different
bus and metro stations in the city, whereas NPTDR contains a snapshot of every public
transport journey in Great Britain for a selected week in October each year. While NPTDR
database covers Great Britain (England, Scotland, Wales), we focus only on London city.
First, we filter all the stations from NPTDR that are inside the bounding box of London
city. Second, we extract all the stop points and trajectories of the two modes of transporta-
tion considered, i.e., bus and metro networks in this case. Then, we use these stop points
and trajectories to build the graph of each layer. Next, we identify the inter-layer edges
that connect all the same nodes residing in both layers. Finally, we build a two-layer trans-
portation multiplex for the city of London by merging both graphs and using the identified

ordinal nodes.

Table 1 Basic statistics about different transportation networks used in this study. Bus (initial) is the
initial bus network extracted from GTFS files; Bus (multiplex) is the part of the initial bus network that
matches the metro network in the city. Edges in Bus (multiplex) are routes (paths) extracted from Bus

(initial)

City/Mode # Nodes # Edges Degree Area (km<)
Paris/Metro 302 359 237 688.15
Paris/Bus (initial) 4647 7749 333 4279.93
Paris/Bus (multiplex) 302 38,842 257.23 687.52
New York/Metro 211 232 2.19 207.63
New York/Bus (initial) 6295 6858 217 1017.18
New York/Bus (multiplex) 211 1276 12.09 207.63
Chicago/Metro 72 72 20 163.57
Chicago/Bus (initial) 8602 8882 2.06 25342
Chicago/Bus (multiplex) 72 72 20 163.58
London/Metro 307 372 242 4229.38

London/Bus (multiplex) 307 381 249 4229.39
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Note that the hardest part about collecting data, is to use two sources of data for two
modes of transportation, for example the metro network and the bus network for the city
of London. When we started the resilience analysis, the data was not available for the
city of London. Thus, we used other reliable data sources, Open Source Maps and The
National Public Transport Data (NPTDR), in this case. The summary of the characteristic
of each network is given in Table 1.

6.2 Convergence of the coverage

Given a multi-model transportation network and its corresponding multiplex represen-
tation, we are interested in how much of the network a random walker can visit (cover)
within a given budget of time. The time budget can be substituted with a correspond-
ing number of steps or movements that allow the walker to go from one node to one of
its neighbors. The faster the coverage (i.e., fewer steps) the better. Indeed, the number of
steps required to visit the entire network in a complete randomized setting is a very good
indicator about the quality of the underlying multi-model transportation system.

We first run MUME to compute the coverage convergence curve on synthetic graphs.
The idea is to build different multiplex networks of two layers to mimic the two trans-
portation modes under study. We also enforce different configurations of the multiplex to
capture the heterogeneity observed in the real networks of buses and metros as shown in
Fig. 3. Thus we generate random graphs with heterogeneous degree distributions follow-
ing Barabdsi—Albert (BA) model and other graphs with more homogeneous degree distri-
butions following Erdds—Rényi (ER). Based on our empirical observation, we found that
metro stations in general are quite somewhat similar to BA graphs, whereas bus graphs we
generated resemble ER graphs. The reason of this interesting distinction resides in the way
bus networks are generated in which we only keep bus stations that match metro stations,
and then create edges between any two pairs of nodes (bus stations) for which there is a
shortest path in the initial bus graph that doesn’t contain any metro station. This process
naturally lead to a much denser graph as the number of paths in a graph is much higher
than the number of its edges. Thus, we create three different multiplex networks configu-
rations: BA-BA, BA-ER, and ER-ER. The first and third networks simulate cases where the
two transportation modes share similar topological properties, whereas the second case
simulates more realistic cases of transportation modes having different graph topologies.
We fix the number of nodes in all graphs to N = 100 and vary the number of edges. In BA,
we requested that each new node connects to two already existing nodes, while in ER we
set the density score p = 0.4.

Practically, we vary 7, the number of steps, to take values in [0, 1000] interval. We request
MUME to compute the coverage score for each value of t. We run this process several
time and report on averages. Figure 4 plots the coverage curves of the different synthetic
multiplex networks.

Several observations can be made here. First, while all three multiplex networks cov-
erage converge within t = 1000 steps, it is interesting to see that ER-ER network reaches
convergence faster. This is mainly due to the fact that the graphs on both layers in the ER-
ER network are dense which leads to a smaller average shortest path in the whole network.
This result is also partly explained by the homogeneous degree distribution of ER graphs
which prevents the random walker from getting stuck in a local hub, unlike BA graphs that
favor the formation of such hubs. Second, we found that BA-BA and BA-ER multiplex net-
works show exactly the same convergence behavior, despite the multiple runs performed.
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Figure 4 Coverage convergence of random multiplex networks. We consider three different configurations
for a two layered multiplex: BA-BA, BA-ER, and ER-ER with the following settings: BA (N = 100, £ = 196), ER
(N=100, £ =2003)

While further investigations need to be conducted to determine the actual reasons behind
such behavior, we believe that the presence of one BA layer in the multiplex can heavily
impact the random walker and get him into those dense regions and hubs in the BA layer
that are not necessarily connected in the other layer.

Figure 5 reports the results of coverage convergence observed in the four cities studied
here. We intentionally run the random walker for the same number of steps (r = 1000)
for all cities to enable a direct comparison of the results. As expected, the convergence
of the coverage happens faster in smaller graphs (Chicago) than bigger once (Paris and
New York). Obviously, the smaller the number of stations a transportation system has,
the fewer the number of steps required to cover all of them. We also see that the multi-
modal transportation network of Paris allows a higher coverage compared to New York
and London. This is explained by the density of both “Metro de Paris” which is the second
denser worldwide, and the great density of its corresponding bus network that has more
that 38K edges (a complete graph of that size would have had approximately 45K edges).
Another surprising yet interesting observation is the coverage achieved by the London
multiplex network, which lays a little bit above 0.2 at T = 1000, way behind the perfor-
mances achieved by the other three cities. This is all the more surprising that both Lon-
don metro network and bus network are of the same size as Paris networks. The reasons
of such under-performance might be due to the fact that London networks have been gen-
erated from a different dataset which might be incomplete for the bus network (the metro
network has been thoroughly verified by us).

6.3 Robustness to failures

Another important qualitative aspect of multi-modal transportation systems is their abil-
ity to withstand random failures that may occur in the system. In reality, failures hap-
pen more frequently that one could imagine. A heavy traffic jam due to an accident, bad
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Figure 5 Coverage convergence of the multi-modal transportation networks of Paris, London, New York City,
and Chicago

weather condition, or renovation work usually can take down an entire road segment
which forces commuters to change their routes, especially in cases where bus drivers for
instance cannot take initiatives on their own. It is also the case of metro stations, where
frequent closure of segments happen due to electrical shutdowns, suspicious objects on
the rails, maintenance work, etc. Thus, understanding the impact of such failures and the
way they affect the entire system is of a great importance for cities.

To quantify the robustness of the multi-modal transportation system, we use percola-
tion theory [19] that nicely describes the impact of edge failures in the multiplex on the
coverage. It is worth noticing that we are dealing with bond percolation as opposed to site
percolation in which nodes are removed from the network instead.

For all multiplex networks we have created (three synthetic and four real), we iteratively
remove a fraction of edges (5%) from both layers of the multiplex, and use MUME to com-
pute the coverage achieved at t = 1000 steps of the resulting network. As one could expect,
the coverage score should be inversely correlated with the fraction of edges removed, i.e.,
the more failures there is, the harder it gets for the random walk to reach nodes.

Figures 6 and 7 show the degradation of the coverage as a function of the amount of
removed edges in both synthetic and real multi-modal transportation networks. Interest-
ingly enough, we see in Fig. 6 that failures affect our three synthetic networks in three
completely different ways. The most fragile multiplex network is BA-ER that gets almost
completely disconnected with the removal of only 20% of its edges. This is followed by
the BA-BA network whose coverage degradation is somewhat linear to the fraction of re-
moved edges. ER-ER on the other hand demonstrates a strong robustness to failures with
it securing more than 85% of its coverage when 80% of its edges are removed. While the
results of ER-ER and BA-BA can be explained by the relatively high/low densities of their
two basic forming graphs BA, ER (the higher the density, the better the robustness of the
coverage). It is unclear why having two graphs of different topological structures severely
fragilizes the whole integrated multiplex system.
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Figure 6 Robustness of random multiplexes to random failures. The curves are averaged over three
independent runs
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Figure 7 Robustness to failure of three big cities: Paris, London, and New York City

Here, it is worth noting that most of the literature regards the BA graphs as being more
robust to failure. However, most of these studies are “site” specific; and we may cite the
works, e.g., in [63, 64], which look (even though partially) at the relationship between edge
failure, robustness and network topology.

Unsurprisingly, the real transportation networks of the four cities behave just like the
synthetic BA-ER multiplex network. High fragility is observed as networks lose more than
20% of their coverage after removing only 5% of their edges. The coverage tends to zero

after the removal of 50% of edges. Despite this common fragility, one can see that Paris
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transportation system is slightly more robust to failures, followed by Chicago, New York
City, and London.

7 Conclusion

The main objective of this study is to better understand and predict urban mobility pat-
terns in the city, and analyze the robustness of the multi-modal transportation system,
i.e., its ability to withstand random and targeted failures. To do so, we model the multi-
modal transportation system as a “multiplex network” consisting of several layers that
correspond to the different transportation modes available in the city; and we estimate
the coverage of the city, which is defined as the average fraction of distinct vertices visited
at least once during a time budget.

We first developed a mathematical framework to compute the coverage in a multiplex
network setting, which we applied to different synthetic and real-life transportation sys-
tems built from four different cities, namely Chicago, London, New York, and Paris. Our
experiments revealed different convergence patterns of the coverage in multiplex net-
works that are related to the topological characteristics of their underlying graphs. Dense
and homogeneous graphs for instance lead to a faster convergence in general. Second,
we looked at how different transportation networks react to failures and stress. Failures
are simulated by the withdrawal of a small fraction of the edges from different layers, and
coverage is computed for each removed fraction. A close inspection of the results showed
that, unlike synthetic transportation networks, the four cities we studied behave quite sim-
ilarly in terms of coverage degradation, with Paris network being the most robust among
all. Moreover, one of the interesting findings of this work is the similarity between real
transportation networks and BA-ER simulated networks.

As a future work, we intend to expand our mathematical framework to capture the ac-
tual commuting dynamics. Our focus will be to estimate the average travel time of com-
muters in different cities, and how it is affected by failures occurring in the system. We are
developing a scalable computational framework to help planners in the city of Doha to effi-
ciently manage the flow of people and intelligently handle capacity of their infrastructure.
We hope that the developed computational tool will help the city of Doha to identify early
problems, predict failures and design better transportation infrastructure in preparation
for the FIFA 2022 world cup.
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