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Abstract
Detecting and visualizing what are the most relevant changes in an evolving network
is an open challenge in several domains. We present a fast algorithm that filters
subsets of the strongest nodes and edges representing an evolving weighted graph
and visualize it by either creating a movie, or by streaming it to an interactive network
visualization tool. The algorithm is an approximation of exponential sliding
time-window that scales linearly with the number of interactions. We compare the
algorithm against rectangular and exponential sliding time-window methods. Our
network filtering algorithm: (i) captures persistent trends in the structure of dynamic
weighted networks, (ii) smoothens transitions between the snapshots of dynamic
network, and (iii) uses limited memory and processor time. The algorithm is publicly
available as open-source software.

1 Introduction
Network visualization is widely adopted to make sense of, and gain insight from, com-
plex and large interaction data. These visualizations are typically static, and incapable to
deal with quickly changing networks. Dynamic graphs, where nodes and edges churn and
change over time, can be effective means of visualizing evolving networked systems such
as social media, similarity graphs, or interaction networks between real world entities.
The recent availability of live data streams from online social media motivated the devel-
opment of interfaces to process and visualize evolving graphs. Dynamic visualization is
supported by several tools [–]. In particular, Gephi [] supports graph streaming with
a dedicated API based on JSON events and enables the association of timestamps to each
graph component.
While there is some literature on dynamic layout of graphs [–], not much work has

been done so far about developing information filtering techniques for dynamic visual-
ization of large and quickly changing networks. Yet, for large networks in which the rate
of structural changes in time could be very high, the task of determining the nodes and
edges that can represent and transmit the salient structural properties of the network at a
certain time is crucial to produce meaningful visualizations of the graph evolution.
We contribute to filling this gap by presenting a new graph filtering and visualization

tool called fastviz that processes a chronological sequence of weighted interactions
between the graph nodes and dynamically filters the most relevant parts of the network
to visualize. Our algorithm:
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• captures persistent trends in structural properties of dynamic networks, while
removing no longer relevant portions of the networks and emphasizing old nodes and
links that show fresh activity;

• smoothens transitions between the snapshots of a dynamic network by leveraging
short-term and long-term node activity;

• uses limited memory and processor time and is fast enough to be applied to large live
data streams and visualize their representation in the form of a network.

The reminder of this paper is structured as follows. First, we introduce related studies in
Section .Next, we introduce thefastvizfilteringmethod for dynamic networks in Sec-
tion .We compare this method against rectangular and exponential sliding time-window
approaches and show what are the advantages of our method. Finally, we present visual-
izations created with our filtering methods for four different real datasets in Section ,
and conclude the study.

2 Related work
Graph drawing [, ] is a branch of information visualization that has acquired great im-
portance in complex systems analysis. A good pictorial representation of a graph can high-
light its most important structural components, logically partition its different regions,
and point out the most central nodes and the edges on which the information flows more
frequently or quickly. The rapid development of computer-aided visualization tools and
the refinement of graph layout algorithms [–] allowed increasingly higher-quality vi-
sualizations of large graphs []. As a result, many open tools for static graph analysis and
visualization have been developed in the last decade. Among the best known we mention
Walrus [], Pajek [, ], Visone [], GUESS [], Networkbench [], NodeXL [], and
Tulip []. Studies about comparisons of different tools have also been published recently
[].
The interest in depicting the shape of online social networks [, ] and the avail-

ability of live data streams from online social media motivated the development of tools
for animated visualizations of dynamic graphs [], in offline contexts, where temporal
graph evolution is known in advance, as well as in online scenarios, where the graph
updates are received in a streaming fashion []. Several tools supporting dynamics vi-
sualization emerged, including GraphAEL [] (http://graphael.cs.arizona.edu/), GleamViz
(www.gleamviz.org), Gephi [] (gephi.org), and GraphStream [] (graphstream-project.
org). Despite static visualizations based on time-windows [], alluvial diagrams [], or
matrices [–] have been explored as solutions to capture the graph evolution, dynamic
graph drawing remains the technique that has attractedmore interest in the research com-
munity so far. Compared to static visualizations, dynamic animations present additional
challenges: user studies have shown that they can be perceived as harder to parse visually,
even though they have the potential to be more informative and engaging [].
As a result, a large corpus of work about the theoretical concepts on good visualiza-

tion practices, especially for dynamic graphs, has been produced in the last two decades.
Besides the work done in defining efficient update operations on graphs [, ], several
principles about good graph visualizations have been proposed and explored in different
studies. Friedrich and Eades [] defined high-level guidelines for a good visualization of
graph evolution with animations, including uniform, smooth and symmetrical movement
of graph elements, withminimization of edge crossings and overviewing some techniques
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that make the visualization more enjoyable, such as fadeout deletion of nodes. Graph
readability has been measured in user studies in relation to several tasks [–]; the ex-
perimental findings highlight the importance of visualization criteria such as minimizing
bends and edge crossings and maximizing cluster separation in facilitating the viewer’s
interpretation and understanding of the graph. A general concept that has been studied
for long in relation to the quality of dynamic graph visualization is the mental map [–
] that the viewer has of the graph structure. In practical terms, the placement of existing
nodes and edges should change as little as possiblewhen a change ismade to the graph [],
under the hypothesis that if themental map is preserved the parsing of the visual informa-
tion is faster andmore accurate. More recent work [] has reappraised the importance of
the mental map in the comprehension of a dynamic graph series, while identifying some
cases in which it may help [, ] (e.g., memorability of the graph evolution, following
long paths, recognition of recurrent patterns, tracking a large number of moving objects).
More in general, there are several open fronts in empirical research in graph visualiza-

tion to identify the impact of certain factors on the quality of the animation (e.g., speed
[], interactivity []). An extensive overview of this aspect has been conducted recently
by Kriglstein et al. []. Methods to preserve the stability of nodes and the consistency of
the network structure leveraging hierarchical organization on nodes have been proposed
[–]. User studies have shown that hierarchical approaches that collapse several nodes
in larger meta-nodes can improve graph readability in cases of high edge density []. The
graph layout also has a significant impact on the readability of graphs []. Some work has
been done to adapt spectral and force-directed graph layouts [] to incremental layouts
that recompute the position of nodes at time t based on the previous positions at time t–
minimizing displacement of vertices [, –] or to propose new “stress-minimization”
strategies to map the changes in the graph [].
Although much exploration has been done in the visualization principles to achieve

highly-readable animations, two aspects have been overlooked so far.
First, not many techniques to extract and visualize the most relevant information from

very large graphs have been studied yet. Graph decomposition has been used in a static
context to increase the readability of the network by splitting it into modules to be visu-
alized separately [], while sliding time-windows have been employed to discard older
nodes and edges in visualization of graph evolution []. A hierarchical organization of
nodes according to some authority or centrality measure allows to visualize the graph at
different levels of details, eliminating the need to display all nodes and edges at once [].
Some work has been done about interactive exploration by blending different visualiza-
tion paradigms [] and time-varying clustering []. Indices to measure the relevance of
events in a dynamic graph at both node and community level have also been proposed
[], even if they have not been applied to any graph animation task. Yet, none of these
techniques has been tested on very large data and none of the modern visualization tools
provide features for the detection of the most relevant components of a graph at a given
time. On the other hand, quantitative studies on the characterization of temporal net-
works [–] have been conducted, but with no direct connection with the dynamic
visualization task.
Last, the visualization of large graphs in an online scenario, where node and edge updates

are received in a live stream, and the related practical implications of dynamic visualiza-
tions, have rarely been considered. In this context, just some exploratory work has been
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carried out about information selection techniques for dynamic graph visualization, in-
cluding solutions based on temporal decay of nodes and edges [], node clustering [],
and centrality indices [, ].

3 Network filtering
We introduce the fastviz algorithm that takes in input a chronological stream of in-
teractions between nodes (i.e., network edges) and converts it into a set of graph updates
that account only for the most relevant part of the network. The algorithm has two stages:
buffering of filtered network and generation of differential updates for the visualization
(see Figure ). The algorithm stores and visualizes the nodes with the highest strengths,
i.e., the highest sum of weights of their connections.

3.1 Input
The data taken as input is an ordered chronological sequence of interactions between
nodes. The interactions can be either pairwise or cliques of interacting nodes. For instance,
the following input:

〈ti,n, . . . ,nm,wi〉

represents the occurrence of interactions between nodes n, . . . ,nm of weight wi at epoch
time ti. Entries with more than two nodes are interpreted as interactions happening be-
tween each pair of members of the clique with the respective weight.Multiple interactions

Figure 1 Diagram of the algorithm. The diagram
illustrating the main components of the algorithm.
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between the same pair of nodes sum up by adding up their corresponding weights. The
advantage of the clique-wise format over the pairwise format is that the size of input files
is smaller.

3.2 Filtering criterion
In the first stage of the algorithm, at most Nb nodes with the highest strengths are saved
in the buffer together with the interactions among them. The strength Si of a node i is
a sum of weights of all connections of that node, i.e., Si =

∑
j wij, where wij is the weight

of an undirected connection between nodes i and j. Whenever a new node, which does
not appear in the buffer yet, is read from the input, it replaces the node in the buffer with
the lowest value of the strength. If an incoming input involves a node that is already in the
buffer, then the strength of the node is increased by theweight of the incoming connection.
To emphasize themost recent events and penalize stale ones, a forgettingmechanism that
decreases the strengths of all nodes and weights of all edges is run periodically every time
periodTf bymultiplying their current values by a forgetting factor ≤ Cf < . This process
leads to the removal of old inactive nodes having low strength and storage of old nodes
with fresh activity and high strength.
Note that the forgetting mechanism corresponds to a sliding time-window with expo-

nential decay. The decay determines the weighting of the past interactions in the slid-
ing time-window aggregation of a dynamic network. Standard rectangular sliding time-
window aggregates all past events within the width Ttw of the time-window weighting
them equally. In contrast, in fastviz and in the sliding time-window with an exponen-
tial decay theweighting decreases exponentially (see Figure ). (Under a set of assumptions
one can calculate how much time will a given node stay in the buffered network. Let us
assume that at the time tn the strength of a node n is Sn(tn), that this strengthwill not be in-
creased after time tn, that the next forgetting will happen in Tf time, and that the strength
of the weakest buffered node Sw < Sn(tn) is constant over time. Under these assumptions,
the node n will stay buffered for time t – tn > log(Sw/Sn(tn))

log(Cf )
Tf .) Such exponential decay has

two advantages over a standard rectangular sliding time-window approach. First, it gives
more importance both to the most recent and to the oldest connections, while giving less
importance to the middle-aged interactions. Second, it produces a dynamic network in

Figure 2 The aggregating curves of dynamic network filtering methods. The aggregating curves for
fastviz (black line), rectangular sliding time-window (green dashed), and exponential time-window (blue
dotted). The steps of the fastvizmethod correspond to consecutive multiplications by the forgetting
factor Cf = 2/3 performed after each forgetting period Tf . The rectangular time-window width is set to
Ttw = 3 Tf . The exponent of the exponentially decaying time-window corresponds to the forgetting factor of
fastviz. For these values of the parameters, areas under the aggregating curves of both methods are
approximately equal, according to Equation 1.
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which changes are smoother due to the balanced weighting of old and new connections.
Finally, instead of using the sliding time-window with exponential decay, we introduced
the fastviz algorithm to limit the computational complexity of network filtering. In
principle, time-windowmethods do not introduce such a bound.We explore and confirm
these points in the following subsections using real dynamic networks.

3.3 Filtering criterion versus rectangular and exponential sliding time-windows
Comparison of structural properties of networks produced with different filtering meth-
ods is not straightforward. First, since the networks are dynamic, one needs to compare the
structural properties of the static snapshots of the networks produced by the two meth-
ods at the same time. Second, parameters of the methods, i.e., forgetting factor Cf and
time-window width Ttw, influence the algorithms, so one needs to draw an equivalency
between them to compare themethods under the same conditions. A natural condition to
consider is the one of equal areas under the curves from Figure , representing the contri-
bution of an interaction event to the representation of a node over time. Note that under
this condition a node with constant non-zero activity in time will have the same strength
in networks created with each method. For fastviz, the area Afv under the aggregation
curve is equal to the sum of a geometric progression. Assuming an infinite geometric pro-
gression, we get the approximate Afv = Tf /( – Cf ). The area under the aggregation curve
of the rectangular time-window is simply Atw = Ttw. By demanding the areas to be equal,
we obtain the relation between the parameters of the two methods

Ttw =
Tf

 –Cf
. ()

In general, the forgetting period Tf is fixed, therefore there is only one free parameter
controlling the filtering, e.g., the forgetting factor Cf , which we assign according to the dy-
namic network, i.e., the faster the network densifies in time, themore aggressive forgetting
we use (see Appendix B for more details about the values of parameters). In the following
paragraphs, we analyze the dynamics of several structural properties of the networks pro-
duced with fastviz, rectangular, and exponential sliding time-windowmethods having
equal aggregating areas.
To highlight the differences between the three filtering methods, we apply them to two

real dynamic networks from Twitter characterized by high changeability and measure the
structural properties of resulting networks (Figure ). The networks represent interactions
in Twitter during two widely popular events: the  Super Bowl and the announcement
of Osama bin Laden’s death. Further description and properties of these datasets are pro-
vided in the next section.
Due to this fact the computational complexity of sliding-time window methods in-

creases in time, whereas it is bounded in fastviz. Since network structural properties
such as average degree and clustering depend on the size of the network, we calculate these
properties for the subgraphs of equal size, i.e., for the Nb strongest nodes of the full net-
work produced by each of the sliding time-windowmethods (Figures C-J). For simplicity,
we refer to these subgraphs of Nb nodes as the buffered networks.
Second, we find that the networks produced with our filtering method do not experi-

ence drastic fluctuations of the global and local clustering coefficients and degree assor-
tativity, which are especially evident for the rectangular time-window (Figures E, G, H,

http://www.epjdatascience.com/content/3/1/27
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Figure 3 Structural properties of filtered dynamic networks. Structural properties of filtered dynamic
networks representing user interactions surrounding the 2013 Super Bowl or the announcement of Osama
bin Laden’s death. The values of the properties are plotted as a function of time for the fastviz filtering
(black line), rectangular sliding time-window of matching width (green dashed), or exponential sliding
time-window (blue dotted). The following network properties are plotted from the left-most to the right-most
column: the total number of nodes Nb , the average degree 〈ki〉, the global clustering coefficient Cg , the
average local clustering coefficient 〈ci〉, and the degree assortativity r.

and I). We conclude that the fastviz filtering produces smoother transitions between
network snapshots than rectangular sliding time-window. This property of our method
may improve readability of visualizations of such dynamic networks.
Finally,fastviz captures persistent trends in the values of the properties by leveraging

the short-term and long-term node activity. For instance, it captures the trends in degree,
clustering coefficients, and assortativity that are less visible with the rectangular time-
window, while they are well-visible with the exponential time-window (Figures C-F, I,
and J). Note that high average degree obtained for networks produced with exponential
time-window corresponds to the nodes that are active over a prolonged time-span, whose
activity is aggregated over unbounded aggregation period, and the number of nodes is
unbounded as well. On the contrary, rectangular sliding time-window shows the degree
aggregated over a finite time-window,whilefastviz limits the number of tracked nodes,
leading to lower reported average degree.
To measure the similarity of sets of nodes filtered with different methods we calculate

Jaccard similarity coefficient. Specifically, wemeasure the Jaccard coefficient J of the sets of
Nb strongest nodes filteredwithfastviz and each of the time-windowmethods (Figures
A and B). The value of the coefficient varies in time and among datasets. However, the
similarity between fastviz and exponential time-window is significantly higher than
between fastviz and rectangular time-window. For the Super Bowl dataset, the simi-
larity between fastviz and exponential time-window is close to  most of the time and
has a drop in the middle. The drop corresponds to the period of the game characterized
by the intense turnout of nodes and edges in the buffered network. Hence, the similarity
is not equal to  for the two methods because the weakest nodes are often forgotten and
interchanged with new incoming nodes in fastviz, while in exponential time-window
method they are not forgotten and can slowly become stronger over time. In the next sub-
section we show that this similarity is close to  at all times for the subsets of strongest
nodes selected for visualization.

http://www.epjdatascience.com/content/3/1/27
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Figure 4 Jaccard similarity of networks produced with various methods. Jaccard similarity coefficient J
between sets of nodes obtained with fastviz and rectangular sliding time-window (green dashed) or
exponential sliding time-window (blue dotted). The nodes belong to either buffered or visualized networks
representing Twitter interactions during the Super Bowl or Osama bin Laden’s death. Specifically: (A-D) the
Jaccard coefficient as a function of time; (E-F) the Jaccard coefficient averaged over time as a function of the
number of nodes in the visualized network.

3.4 Network updates for visualization
In the second stage, for the purpose of visualization, the algorithm selects Nv <Nb nodes
with the highest strength and creates a differential update to the visualized network con-
sisting of these nodes and the connections between them. Each such differential update
is meant to be visualized in the resulting animation of the network, e.g., as a frame of a
movie.
We compare the visualized networks generated by each of the filtering methods. Each

of the visualized networks consists of Nv =  strongest nodes and all connections exist-
ing between them in the buffered network. The similarity of the nodes visualized by the
fastviz and exponential time-window methods, measured as Jaccard coefficient J , is 
or close to  (Figures C and D). The visualized networks of the two methods are almost
identical. The structural properties of the networks created with the two methods yield
almost the same values at each point in time (Figures A-J). This result is to be expected,
since the forgettingmechanism of fastviz corresponds closely to the exponential decay
of connection weights. The advantage of our method over exponential time-window con-
sists of the limited computational complexity, whichmakes thefastviz filtering feasible
even for the largest datasets of pairwise interactions. Naturally, the similarity between vi-
sualized networks created with the two methods decreases with the size of the visualized
network Nv (Figures E and F). More specifically, the similarity decreases with the ratio
Nv/Nb, as we keep in our experiments a constant value of Nb = ,. Hence, to visualize
larger networks one can choose to buffer more nodes.
The comparison of the evolution of structural properties of the corresponding buffered

and visualized networks shows that these networks differ significantly for each of the fil-
tering methods (compare Figure  vs. Figure ). This difference is the most salient in the
case of rectangular time-window, which yields considerably larger fluctuations of struc-
tural properties than the other methods. In the cases of fastviz and exponential time-
window some structural properties show evolution that is qualitatively similar for buffered
and visualized networks, e.g., the average degree and the global clustering coefficient (Fig-

http://www.epjdatascience.com/content/3/1/27
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Figure 5 Structural properties of visualized dynamic networks. Structural properties of the visualized
dynamic networks representing Twitter interactions during the Super Bowl or Osama bin Laden’s death. The
values of the properties are plotted as a function of time for the fastviz filtering (black line), rectangular
sliding time-window (green dashed), or exponential sliding time-window (blue dotted). The following
network properties are plotted from the left-most to the right-most column: the total number of visualized
nodes Nv , the average degree 〈ki〉, the global clustering coefficient Cg , the average local clustering coefficient
〈ci〉, and the degree assortativity r.

ures C-F vs. Figures C-F). We conclude that the structure of visualized network differs
significantly from the structure of buffered network, although this difference is smaller for
fastviz than for rectangular sliding time-window.

3.5 Computational complexity
The computational complexity of the buffering stage of the algorithm is O(ENb), where
E is the total number of the pairwise interactions read (the cliques are made of multiple
pairwise interactions). Each timewhen an interaction includes a node that is not yet stored
in the buffered graph the adjacency matrix of the graph needs to be updated. Specifically,
the weakest node is replaced with the new node, so Nb entries in the adjacency matrix are
zeroed, which corresponds to O(ENb). The memory usage scales as O(N

b ), accounting
for the adjacency matrix of the buffered graph. (For certain real dynamic networks, the
buffered graph is sparse. In such cases, one can proposemore optimized implementations
of fastviz. Here, we focus on limiting the time complexity so that it scales linearly with
the number of interactions and describe the generic implementation that achieves it.) The
second, update-generating, stage has computational complexity ofO(UNb log(Nb)), where
U is the total number of differential updates, which is a fraction of E and commonly it
is many times smaller than E. (Typically, a large number of interactions is aggregated to
create one differential update to the visualized network. In the examples that we show in
the next section, one update aggregates from  to  million interactions. Therefore, U
is from  to  million times smaller than E.) This term corresponds to the fact that the
strengths of all buffered nodes are sorted each time an update to the visualized network
is prepared. The memory trace of this stage is very low and scales asO(Nv). We conclude
that our method has computational complexity that scales linearly with the number of
interactions. It is therefore fast, that is, able to deal with extremely large dynamic networks
efficiently.

http://www.epjdatascience.com/content/3/1/27
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4 Visualization
In this section, we describe animations of exemplary dynamic graphs filtered with
fastviz. Principally, the sequence of graph updates can be converted into image frames
that are combined into a movie depicting the network evolution. We implement this vi-
sualizing technique and create with it the network animations described below. Alterna-
tively, the updates can be fed directly to theGephi StreamingAPI to produce an interactive
visualization of the evolving network. The Gephi Streaming API allows graph streaming
from a client to a server where Gephi is running. In such a case, the graphs are streamed
directly from our filtering system to the Gephi server without any third-party modules.
In Appendix A, we introduce implementation details of both approaches. Finally, corre-
sponding animations can be created by other visualization tools fed with the fastviz
updates; we highly encourage their development.

4.1 Datasets
We test the fastviz filtering and our visualizing technique on four datasets very differ-
ent from each other in nature, size, and time span (see Table ). The datasets and movies
produced from each dataset are described in the following subsections (see Figure ). In
Appendix A, we present the source code of both tools with their documentation, four dy-
namic graph datasets, and instructions to recreate the visualizations introduced in this

Table 1 Statistics of the experimental datasets

Dataset Time period Nodes Edges Nodes drawn

Super Bowl 2 days 49k 1.1M 577
Osama bin Laden’s death 2 hours 95k 198k 279
IMDB movie keywords 6 years 1k 220M 301
US patent title words 34 years 414k 90M 106

Figure 6 Screenshots of the generated movies. Screenshots of the movies generated from the datasets:
(A) Super Bowl (full animation is available at http://youtu.be/N1wmJG3dVhs), (B) Osama bin Laden’s death
(http://youtu.be/gk03CJDAp_w), (C) IMDB keywords (http://youtu.be/JxWGjMdLUdQ), (D) US Patents
(http://youtu.be/Q7p-bRY7_n0).

http://www.epjdatascience.com/content/3/1/27
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section. In Appendix B, we provide and describe the values of the parameters of the algo-
rithm and the visualizing tool used for these datasets.

4.2 Twitter
Weuse data obtained through theTwitter gardenhose streamingAPI, which covers around
%of the tweet volume.We focus on two events: the announcement ofOsama bin Laden’s
death and the  Super Bowl. We consider user mentions and hashtags as entities and
their co-occurrence in the same tweet as interactions between them.
The first video (Figure A) shows how the anticipation for the Super Bowl steadily grows

on early Sunday morning and afternoon, and how it explodes when the game is about to
start. Hashtags related to #commercials and concerts (e.g., #beyonce) are evident. Later,
the impact of the #blackout is clearly visible. The interest about the event drops rapidly
after the game is over and stays low during the next day.
The video about the announcement of Osama bin Laden’s death (Figure B) shows the

initial burst caused by @keithurbahn and how the breaking news was spread by users
@brianstelter and @jacksonjk. The video shows that the news appears later via #cnn and
is announced by @obama. The breaking of this event on Twitter is described in detail by
Lotan [].

4.3 IMDBmovies
We use a dataset from IMDB of all movies, their year of release and all the keywords as-
signed to them (from imdb.to/SZD).We create a network of keywords that are assigned
to the same movies. Our video (Figure C) shows interesting evolution of the keywords
from “character-name-in-title” and “based-on-novel” (first half of th century), through
“martial-arts” (s and s) to “independent-film” (s and later), “anime” and “surreal-
ism” (s).

4.4 Patents
We use a set of US patents issued between  and  [].We analyze the appearance
of words in their titles.Whenever two ormore words appear in a title of a patent we create
a link between them at themoment when the patent was issued. To improve readability we
filter out stopwords and the generic frequent words: “method,” “device” and “apparatus.”
Our video (Figure D) shows that at the beginning of the period techniques related to “en-
gine” and “combustion” were popular, and later start to cluster together with “motor” and
“vehicle.” Another cluster is sparked by patents about “magnetic” “recording” and “image”
“processing.” It merges with a cluster of words related to “semiconductor” and “liquid”
“crystal” to form the largest cluster of connected keywords at the end of the period.

4.5 Other visualizations
Other than these experimental datasets, on-demand animations of Twitter hashtag co-
occurrence and diffusion (retweet and mention) networks can be generated with our
tool via the Truthy service (truthy.indiana.edu/movies). Hundreds of videos have al-
ready been generated by the users of the platform and are available to view on YouTube
(youtube.com/user/truthyatindiana/videos).

http://www.epjdatascience.com/content/3/1/27
http://imdb.to/11SZD
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4.6 Summary
Thedatasets in our case studies are fairly diverse in topicality, time span, and size, as shown
in Table . Nevertheless, our method is able to narrow down the visualization to meaning-
ful small subgraphs with less than  distinct nodes in all cases. The high performance of
the algorithmmakes it viable for real-time visualizations of live and large data streams. On
a desktop machine the algorithm producing differential updates of the network took sev-
eral minutes to finish for the US patents and less than two minutes for the other datasets.
Given such a performance, it is possible to visualize in real-time highly popular events
such as the Super Bowl, which produced up to , tweets per second.

5 Conclusions
Tools for dynamic graph visualization developed so far do not provide specialized ways to
dynamically select the most important portions of large evolving graphs. We contribute
to filling this gap by proposing an algorithm to filter nodes and edges that best repre-
sent the network structure at a given time. Our method captures trends and smoothens
the dynamics of structural properties of weighted networks by leveraging the short-term
and long-term node activity. Furthermore, our filtering method uses limited memory and
processor time making it viable for large live data streams. We implemented our filtering
algorithm in open source tools that take in input a stream of interaction data and out-
put a movie of the network evolution or a live Gephi animation. As future work, we wish
to improve our algorithm by means of further optimization and to enhance the tools by
providing a standalone module for live visualization of graph evolution.

Appendix A: Implementation details and source code
We have implemented two independent tools described in the manuscript. The first tool
is the fastviz algorithm. The second tool converts the sequence of updates into image
frames that are combined into a movie depicting the network evolution. We release the
source code of both tools (see the project website github.com/WICI/fastviz). Here, we
describe the two tools in more detail.
The first tool is the fastviz algorithm. It takes in input a chronological stream of

interactions between nodes and converts it into a set of graph updates that account only
for themost relevant part of the network in the JSON format. In the network filtering stage,
the algorithm stores a buffered network of size Nb, limiting the computational complexity
and memory usage of the algorithm. In the second stage, for the purpose of visualization,
the algorithm selectsNv <Nb nodes with the highest strength and all edges between these
nodes with the highest strength and all edges between these nodes that have weight above
a certain threshold wmin. The subgraph induced by the Nv nodes is compared with the
subgraph in the previous state and a differential update is created. The updates are created
per every time interval that is determined with the time contraction parameter Tc. A value
of  for this parameter means that the time will flow in the visualization  times faster
than in the data given as the input (see Appendix B). The differential updates are written
in output in the form of a JSON file formatted according to the Gephi Streaming API [].
We choose JSON format specifically due to the compatibility with Gephi Streaming API.
In short, each line of the JSON file corresponds to one update of the graph structure and
contains a sequence of JSON objects that specify the addition/deletion/attribute change

http://www.epjdatascience.com/content/3/1/27
http://github.com/WICI/fastviz
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of nodes and edges. We also introduced a new type of object to deal with labels on the
screen, for example, to write the date and time on the screen.
The second tool converts the sequence of updates into image frames that are combined

into a movie depicting the network evolution. To this end, the sequence of updates pro-
duced by the filtering algorithm is fed to a pythonmodule that builds a representation of a
dynamic graph, namely an object that handles each of the updates and reflects the changes
to its current structure. The transition between the structural states of the graph deter-
mined by the received updates is depicted by a sequence of image frames. Each differential
update correspond to one visualization frame, i.e., one frame of an animation. In its ini-
tial state, the nodes in the network are arranged according to the Fruchterman Reingold
graph layout algorithm []. The choice of the layout is arbitrary and other layouts can
be used and compared. However, due to the focus of this study on the filtering method,
rather than the quality of the visualization, we do not explore any other layout algorithms.
For each new incoming event, a new layout is computed by running N iterations of the
layout algorithm, using the previous layout as a seed. Intermediate layouts are produced
at each iteration of the algorithm. Every intermediate layout is converted to a png frame
that is combined through themencoder tool [] to produce a movie that shows a smooth
transition between different states. Themovie is encoded with the frequency of  frames
per second. To avoid nodes and edges to appear or disappear abruptly in the movie, we
use animations that smoothly collapse dying nodes and expand new ones. A configura-
tion file allows to modify the default movie appearance (e.g, resolution, colors) and layout
parameters (see the project website).
We release the source code of both tools with the documentation under the GNU Gen-

eral Public License (see the project website github.com/WICI/fastviz). Together with the
tools we release the datasets used in this paper and instructions on how to recreate all the
examples of animations presented in this manuscript. Additionally, the updates created
with fastviz can be fed directly to the Gephi Streaming API to produce an interactive
visualization of the evolving network. Respective instructions can be found at the website
of the project.

Appendix B: Algorithm parameters
The exact behavior of the fastviz filtering depends on the parameters introduced in the
manuscript.We present the values of the parameters used in the case studies and their de-
fault values in Table . The default values of the parameters are meant to be universal and
give reasonably good visualizations for most datasets. Overall, three parameters require
adjustment to the input data, namely time contraction Tc, edge width threshold wmin, and

Table 2 Values of the parameters of the fastviz algorithm for the introduced case studies

Dataset Tc wmin Cf

Super Bowl 3,600 10 0.8
Osama bin Laden’s death 500 0.95 0.9
IMDB movie keywords 3,600×24×1,095 10 0.75
US patent title words 3,600×24×400 20 0.65

Default 3,600 0.95 0.75

The last row contains the default values of the corresponding parameters of the algorithm. Remaining parameters of the
algorithm are set to their default values, i.e., Tf = 10 frames, Nb = 2,000, Nv = 50.

http://www.epjdatascience.com/content/3/1/27
http://github.com/WICI/fastviz
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forgetting factor Cf . We provide exemplary values of these parameters for the introduced
datasets in Table  and describe these parameters in detail below.
The time contraction Tc corresponds to the number of seconds in data time scale that

are going to be contracted to one second of the visualization. The larger the time span of
the dataset, the larger should be this parameter in order to keep the length of visualization
fixed. For instance, if the timespan of the network is  hours, and one wants to see its
evolution in a -second-long animation, then Tc should be set to ,. It is crucial to
provide a desired value for this parameter, because providing a value that is too large will
create just a few network updates and a very short animation, while providing a value that
is too small will create a large number of updates making the JSON file very big and the
animation very long.
The minimal edge weight wmin is a threshold above which edges appear in the visual-

ization. Low value of this parameter may results in many edges of low weight appearing
in the animation, while high value of the parameter may prevent any edges from being
visualized. In case a user does not have any information about the visualized network,
we recommend leaving this parameter at its default value of ., which will visualize all
edges of standard weight  or higher.
The forgetting factor Cf decides how fast older interactions among nodes are forgotten

in comparison with more recent interactions. This parameter can be tuned individually
for the purpose of the visualization. In general, the faster the network densifies in time,
the more aggressive should be the forgetting, i.e., the lower should be the forgetting factor
Cf . In general, keeping the default value of this parameter is safe, although its adjustment
will improve the quality of visualization.
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