Skip to main content
Log in

Ultra-narrow band perfect absorber for sensing applications in the visible region

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Plasmonics is widely used for converting electromagnetic radiation into energy and confining electromagnetic radiation below the diffraction limit. However, the ultra narrowband and high electromagnetic field cannot be obtained simultaneously because of resistive loss and radiation damping in the metals. In this article, a metallic ultra-narrow band perfect absorber has been proposed consisting of an array of four squares on a silver layer. The structure shows more than 99% absorption and full width at half maxima less than 2 nm at resonance wavelength. The absorption mechanism has been revealed by calculating electric and magnetic field profiles. The dependence of the structure on the geometrical parameters has been studied and the structure has thus been optimized at 692 nm i.e. in the visible range of frequency. The proposed structure is then investigated for sensing application. The structure shows high sensitivity of 680 nm/RIU in the visible range of wavelength and a high figure of merit of 348.72.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. A.M. Shrivastav, U. Cvelbar, I. Abdulhalim, Commun. Biol. 4(1), 70 (2021)

    Article  Google Scholar 

  2. M.N. Baitha, K. Kim, IEEE Photonics Technol. Lett. 34(24), 1329–1332 (2022)

    Article  ADS  Google Scholar 

  3. A. Dorodnyy, Y. Salamin, P. Ma, J.V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A.F. i-Morral, J. Leuthold, IEEE J. Sel. Top. Quantum Electron. 24(6), 1–13 (2018)

    Article  Google Scholar 

  4. H. Reather, Springer Tracts in Modern Physics, vol. 111 (1988), pp. 1–3.

  5. A.A. Maradudin, J.R. Sambles, W.L. Barnes, Modern Plasmonics (Elsevier, Amsterdam, 2014)

    Google Scholar 

  6. S. Pevec, D. Donlagic, Miniature fiber-optic Fabry–Perot refractive index sensor for gas sensing with a resolution of 5x109 RIU. Opt. Express 26(18), 23868–23882 (2018)

    Article  ADS  Google Scholar 

  7. S. Verma, B. Rahman, Sensors 23(3), 1290 (2023)

    Article  ADS  Google Scholar 

  8. A.E. Krasnok, I.S. Maksymov, A.I. Denisyuk, P.A. Belov, A.E. Miroshnichenko, C.R. Simovski, Y.S. Kivshar, Phys. Usp. 56(6), 539 (2013)

    Article  ADS  Google Scholar 

  9. R. Ranga, Y. Kalra, K. Kishor, Opt. Commun. 481, 126511 (2021)

    Article  Google Scholar 

  10. P. Agarwal, K. Kishor, R.K. Sinha, Opt. Commun. 522, 128667 (2022)

    Article  Google Scholar 

  11. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, Nano Lett. 12(1), 440–445 (2012)

    Article  ADS  Google Scholar 

  12. C. Fei-Guo, T. Sun, F. Cao, Q. Liu, Z. Ren, Light Sci. Appl. 3(4), e161 (2014)

    Article  ADS  Google Scholar 

  13. Y. Li, L. Su, C. Shou, C. Yu, J. Deng, Y. Fang, Sci. Rep. 3(1), 2865 (2013)

    Article  ADS  Google Scholar 

  14. A.A. Jamali, B. Witzigmann, Plasmonics 9, 1265–1270 (2014)

    Article  Google Scholar 

  15. W. Zhou, K. Li, C. Song, P. Hao, M. Chi, M. Yu, Y. Wu, Opt. Express 23(11), A413–A418 (2015)

    Article  ADS  Google Scholar 

  16. X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Phys. Rev. Lett. 107(4), 045901 (2011)

    Article  ADS  Google Scholar 

  17. K.T. Lee, S. Seo, L.J. Guo, Adv. Opt. Mater. 3(3), 347–352 (2015)

    Article  Google Scholar 

  18. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  19. Q. Li, Z. Li, X. Xiang, T. Wang, H. Yang, X. Wang, Y. Gong, J. Gao, Coatings 9(6), 393 (2019)

    Article  Google Scholar 

  20. J. Becker, A. Trügler, A. Jakab, U. Hohenester, C. Sönnichsen, Plasmonics 5, 161–167 (2010)

    Article  Google Scholar 

  21. C. Huang, J. Ye, S. Wang, T. Stakenborg, L. Lagae, Appl. Phys. Lett. 100(17), 173114 (2012)

    Article  ADS  Google Scholar 

  22. A.K. Agrawal, A. Ninawe, A. Dhawan, IEEE Sens. J. 22(7), 6491–6508 (2021)

    Article  ADS  Google Scholar 

  23. A.K. Agrawal, A. Suchitta, A. Dhawan, RSC Adv. 12(2), 929–938 (2022)

    Article  ADS  Google Scholar 

  24. A.K. Agrawal, A. Suchitta, A. Dhawan, IEEE Access 9, 10136–10152 (2021)

    Article  Google Scholar 

  25. Z. Yong, S. Zhang, C. Gong, S. He, Sci. Rep. 6(1), 24063 (2016)

    Article  ADS  Google Scholar 

  26. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  27. D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, H. Ye, Nanoscale Res. Lett. 11(1), 1–9 (2016)

    Article  ADS  Google Scholar 

  28. S. Luo, J. Zhao, D. Zuo, X. Wang, Opt. Express 24(9), 9288–9294 (2016)

    Article  ADS  Google Scholar 

  29. S.-Y. Cho, J.L. Briscoe, I.A. Hansen, J.K. Smith, Y. Chang, I. Brener, IEEE Sens. J. 14(5), 1399–1404 (2013)

    Article  ADS  Google Scholar 

  30. E. Kazuma, T. Tatsuma, Nanoscale 6(4), 2397–2405 (2014)

    Article  ADS  Google Scholar 

  31. G. Liu, M. Yu, Z. Liu, P. Pan, X. Liu, S. Huang, Y. Wang, Plasmonics 11, 677–682 (2016)

    Article  Google Scholar 

  32. D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, H. Ye, Nanoscale Res. Lett. 12(1), 1–11 (2017)

    Article  ADS  Google Scholar 

  33. M. Pan, Z. Su, Z. Yu, P. Wu, H. Jile, Z. Yi, Z. Chen, Results Phys. 19, 103415 (2020)

    Article  Google Scholar 

  34. P.B. Johnson, R.-W. Christy, Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  35. Z. Ma, F. Ding, Ultra-broadband metamaterial absorber in Terahertz regime, in 2012 Asia Communications and Photonics Conference (ACP), 7–10 Nov. 2012 (2012), pp. 1–3.

  36. B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, L.-L. Wang, J. Appl. Phys. 117(1), 014504 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the initiatives and support provided by the establishment of the TIFAC-Centre of Relevance and Excellence in Fiber Optics and Optical Communication at Delhi Technological University (Formerly Delhi College of Engineering) Delhi, through the “Mission REACH” program of Technology Vision-2020 of the Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors has contributed equally to the paper.

Corresponding author

Correspondence to Yogita Kalra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranga, R., Kalra, Y., Kishor, K. et al. Ultra-narrow band perfect absorber for sensing applications in the visible region. Eur. Phys. J. D 77, 42 (2023). https://doi.org/10.1140/epjd/s10053-023-00615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00615-7

Navigation