Skip to main content

Advertisement

Log in

Critical velocities for the nanostructure creation on a metal surface by an impact of slow highly charged Ar\(^{q+}\), Kr\(^{q+}\), and Xe\(^{q+}\) ions

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the interaction of highly charged ions (Ar\(^{q+}\), Kr\(^{q+}\), and Xe\(^{q+}\), charge \(q\gg 1\)) with metal surfaces for low to moderate ionic velocities. We calculate the neutralization energy and the deposited kinetic energy, both necessary for the nanostructure (hillocks or craters) creation. The cascade neutralization above the surface we analyze within the framework of the time-symmetrized two-state vector model and the micro-staircase model. The energy deposition inside the solid (nuclear stopping power) we consider using the charge dependent ion-target atom interaction potential. We define the critical ionic velocities as a measure of the interplay of the neutralization energy and the deposited kinetic energy in the process of the surface modification. These quantities enable us to distinguish the velocity regions characteristic for the particular nanostructure shapes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data needed to evaluate the conclusions in this work are present in the paper. Additional raw data are available from the corresponding authors upon reasonable request.]

References

  1. R. Schuch, D. Schneider, D.A. Knapp, D. DeWitt, J. McDonald, M.H. Chen, M.W. Clark, R.E. Marrs, Evidence for internal dielectronic excitation of slow highly charged uranium ions. Phys. Rev. Lett. 70, 1073–1076 (1993). https://doi.org/10.1103/PhysRevLett.70.1073

    Article  ADS  Google Scholar 

  2. G.A. Machicoane, T. Schenkel, T.R. Niedermayr, M.W. Newmann, A.V. Hamza, A.V. Barnes, J.W. McDonald, J.A. Tanis, D.H. Schneider, Internal dielectronic excitation in highly charged ions colliding with surfaces. Phys. Rev. A 65, 042903 (2002). https://doi.org/10.1103/PhysRevA.65.042903

    Article  ADS  Google Scholar 

  3. W. Wang, Z.Y. Song, B.Z. Zhang et al., K-x-ray emission of 1.5–20 kev/q Oq+ (q=3, 5, 6) and Nq+ (q=3, 5) ions impinging on nickel surface. Eur. Phys. J. Plus 137, 1015 (2022). https://doi.org/10.1140/epjp/s13360-022-03229-x

    Article  Google Scholar 

  4. F. Aumayr, S. Facsko, A.S. El-Said, C. Trautmann, M. Schleberger, Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions. J. Phys. Condens. Matter 23, 393001 (2011). https://doi.org/10.1088/0953-8984/23/39/393001

    Article  Google Scholar 

  5. R.A. Wilhelm, R. Heller, S. Facsko, Slow highly charged ion induced nanopit formation on the KCl(001) surface. Euro. Phys. Lett. 115, 43001 (2016). https://doi.org/10.1209/0295-5075/115/43001

    Article  ADS  Google Scholar 

  6. J.M. Pomeroy, A.C. Perrella, H. Grube, J.D. Gillaspy, Gold nanostructures created by highly charged ions. Phys. Rev. B 75, 241409 (2007). https://doi.org/10.1103/PhysRevB.75.241409

    Article  ADS  Google Scholar 

  7. I. Stabrawa, D. Banaś, A. Kubala-Kukuś, K. Szary, J.J. Braziewicz, Czub, Ł Jabłoński, P. Jagodziński, D. Sobota, M. Pajek, K. Skrzypiec, E. Mendyk, M. Teodorczyk, Modification of gold and titanium nanolayers using slow highly charged Xe\(^{q+}\) ions. Nucl. Instrum. Methods Phys. Res.B 408, 235–240 (2017). https://doi.org/10.1016/j.nimb.2017.05.001

    Article  ADS  Google Scholar 

  8. I. Stabrawa, D. Banaś, A. Kubala-Kukuś, Ł Jabłoński, P. Jagodziński, D. Sobota, K. Szary, M. Pajek, E. Mendyk, K. Skrzypiec, M. Borysirwicz, Formation of nanocraters on the surface of gold nanolayer by an impact of highly charged xenon ions. J. Phys. Conf. Ser. 1412, 202024 (2020). https://doi.org/10.1088/1742-6596/1412/20/202024

    Article  Google Scholar 

  9. I. Stabrawa, D. Banaś, A. Kubala-Kukuś, Ł. Jabłoński, P. Jagodziński, D. Sobota, K. Szary, M. Pajek, K. Skrzypiec, E. Mendyk, M. Borysirwicz, M.D. Majkić, N.N. Nedeljković, Energy deposition and formation of nanostructures in the interaction of highly charged xenon ions with gold nanolayers (2022 to be published)

  10. K. Nordlund, F. Djurabekova, Multiscale modelling of irradiation in nanostructures. J. Comput. Electron. 13, 122–141 (2014). https://doi.org/10.1007/962s10825-013-0542-z

    Article  Google Scholar 

  11. E.M. Bringa, K. Nordlund, J. Keinonen, Cratering-energy regimes: from linear collision cascades to heat spikes to macroscopic impacts. Phys. Rev. B 64, 235426 (2001). https://doi.org/10.1103/PhysRevB.64.235426

    Article  ADS  Google Scholar 

  12. M. Toulemonde, C. Dufour, E. Paumier, Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 46, 14362 (1992). https://doi.org/10.1103/PhysRevB.46.14362

    Article  ADS  Google Scholar 

  13. C. Dufour, V. Khomrenkov, Y.Y. Wang, Z.G. Wang, F. Aumayr, M. Toulemonde, An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: comparison to swift heavy ions effect and extension to some others material. J. Phys. Condens. Matter 29, 095001 (2017). https://doi.org/10.1088/1361-648X/855aa547a

    Article  ADS  Google Scholar 

  14. M.D. Majkić, N.N. Nedeljković, R.J. Dojčilović, Interaction of slow highly charged ions with a metal surface covered with a thin dielectric film. The role of the neutralization energy in the nanostructures formation. Mater. Res. Express 4, 095027 (2017). https://doi.org/10.1088/2053-1591/aa8bc7

    Article  ADS  Google Scholar 

  15. M.D. Majkić, N.N. Nedeljković, M.A. Mirković, Neutralization energy contribution to the nanostructure creation by the impact of highly charged ions at arbitrary angle of incidence upon a metal surface covered with a thin dielectric film. Vacuum 165, 62–67 (2019). https://doi.org/10.1016/j.vacuum.2019.04.002

    Article  ADS  Google Scholar 

  16. M.D. Majkić, N.N. Nedeljković, Velocity effect on the nanostructure creation at a solid surface by the impact of slow highly charged ions. Vacuum (2021). https://doi.org/10.1016/j.vacuum.2021.110301

    Article  Google Scholar 

  17. N.N. Nedeljković, Lj. D. Nedeljković, S.B. Vojvodić, M.A. Mirković, Selective Rydberg-level population of multiply charged ions at solid surfaces: A dynamic theory for low-angular-momentum ionic states. Phys. Rev. B. 49, 5621 (1994). https://doi.org/10.1103/PhysRevB.49.5621

    Article  ADS  Google Scholar 

  18. N.N. Nedeljković, M.D. Majkić, Intermediate stages of the Rydberg-level population of multiply charged ions escaping solid surfaces. Phys. Rev. A 76, 042902 (2007). https://doi.org/10.1103/PhysRevA.76.042902

    Article  ADS  Google Scholar 

  19. I.P. Prlina, N.N. Nedeljković, Time-symmetrized description of nonunitary time asymmetric quantum evolution. J. Phys. A Math. Theor. 49, 035301 (2016). https://doi.org/10.1088/1751-8113/49/3/03530

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. N.N. Nedeljković, M.D. Majkić, D.K. Božanić, R.J. Dojčilović, Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry. J. Phys. B At. Mol. Opt. Phys. 49, 125201 (2016). https://doi.org/10.1088/0953-4075/49/12/125201

    Article  ADS  Google Scholar 

  21. N.N. Nedeljković, M.D. Majkić, S.M.D. Galijaš, Grazing incidence collisions of multiply charged ions on solid surfaces. Influence of the formation of intermediate Rydberg states. J. Phys. B At. Mol. Opt. Phys. 45, 21502 (2012). https://doi.org/10.1088/0953-4075/45/21/215202

    Article  Google Scholar 

  22. R.E. Lake, N.R. Arista, Kinetic-energy transfer in highly-charged-ion collisions with carbon. Phys. Rev. A 92, 052710 (2015). https://doi.org/10.1103/PhysRevA.92.052710

  23. R.A. Wilhelm, A.S. El-Said, F. Krokc, R. Heller, E. Gruber, F. Aumayr, S. Facsko, Highly charged ion induced nanostructures at surfaces by strong electronic excitations. Prog. Surf. 90, 377–395 (2015). https://doi.org/10.1016/j.progsurf.2015.06.001

    Article  ADS  Google Scholar 

  24. A.V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010). https://doi.org/10.1063/1.3318261

    Article  ADS  Google Scholar 

  25. R. Lake, J.M. Pomeroy, H. Grube, C.E. Sosolik, Charge state dependent energy deposition by ion impact. Phys. Rev. Lett. 107, 063202 (2011). https://doi.org/10.1103/PhysRevLett.107.063202

    Article  ADS  Google Scholar 

  26. R.A. Wilhelm, W. Moller, Charge-state-dependent energy loss of slow ions. II. Statistical atom model. Phys. Rev. A 93, 052709 (2016). https://doi.org/10.1103/PhysRevA.93.052709

    Article  ADS  Google Scholar 

  27. M.D. Majkić, N.N. Nedeljković, M.A. Mirković, Effect of the Ionic Type on the Shape of the Nanostructures Created by an Impact of Slow Highly Charged Ions on Gold Surface. Publ. Astron. Obs. Belgrade 102, 121–124 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project 171016, 171029).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the preparation of the manuscript.

Corresponding author

Correspondence to Milena D. Majkić.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedeljković, N.N., Majkić, M.D. Critical velocities for the nanostructure creation on a metal surface by an impact of slow highly charged Ar\(^{q+}\), Kr\(^{q+}\), and Xe\(^{q+}\) ions. Eur. Phys. J. D 77, 3 (2023). https://doi.org/10.1140/epjd/s10053-022-00588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00588-z

Navigation