Skip to main content
Log in

Auroras on mars: from discovery to new developments

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Auroras are emissions in a planetary atmosphere caused by its interactions with the surrounding plasma environment. They have been observed in most planets and some moons of the solar system. Since their first discovery in 2005, Mars auroras have been studied extensively and is now a rapidly growing area of research. Since Mars lacks an intrinsic global magnetic field, its crustal field is distributed throughout the planet and its interactions with the surrounding plasma environment lead to a number of complex processes resulting in several types of auroras uncommon on Earth. Martian auroras have been classified as diffuse, discrete and proton aurora. With new capability of synoptic observations made possible with the Hope probe, two new types of auroras have been observed. One of them, which occurs on a much larger spatial scale, covering much of the disk, is known as discrete sinuous aurora. The other subcategory is one of proton auroras observed in patches. Further study of these phenomena will provide insights into the interactions between the atmosphere, magnetosphere and the surrounding plasma environment of Mars. We provide a brief review of the work done on the subject in the past 17 years since their discovery, and report new developments based on observations with Hope probe.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: EMM data was obtained from the EMM Science Data Center (https://sdc.emiratesmarsmission.ae) and MAVEN data from NASA’s Planetary Data System (https://pds.nasa.gov), both of which are data repositories available in the public domain.]

Notes

  1. Although, technically, magnetic field lines always close on themselves or on a boundary, some magnetic field lines may be regarded as open or draped if one end is connected to the planet and the other end is smeared by energetic particles that enter the planetary atmosphere.

  2. Since there is no global magnetic field on Mars, our use of the word loosely describes regions of influence of the magnetic field.

References

  1. R.E. Johnson, Energetic Charged-particle Interactions with Atmospheres and Surfaces, vol. 19 (Springer, Berlin, 2013)

    Google Scholar 

  2. A.L. Melott, B.C. Thomas, C.M. Laird, B. Neuenswander, D. Atri, Atmospheric ionization by high-fluence, hard-spectrum solar proton events and their probable appearance in the ice core archive. J. Geophys. Res. Atmos. 121(6), 3017–3033 (2016)

    Article  ADS  Google Scholar 

  3. P. Newell, T. Sotirelis, S. Wing, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. Space Phys. 114(A9), 5555 (2009)

    Article  Google Scholar 

  4. J. Phillips, A. Stewart, J. Luhmann, The venus ultraviolet aurora: observations at 130.4 nm. Geophys. Res. Lett. 13(10), 1047–1050 (1986)

    Article  ADS  Google Scholar 

  5. J.T. Clarke, G.E. Ballester, J. Trauger, R. Evans, J.E. Connerney, K. Stapelfeldt, D. Crisp, P.D. Feldman, C.J. Burrows, S. Casertano, Far-ultraviolet imaging of jupiter’s aurora and the io “footprint’’. Science 274(5286), 404–409 (1996)

    Article  ADS  Google Scholar 

  6. B. Jakosky, D. Brain, M. Chaffin, S. Curry, J. Deighan, J. Grebowsky, J. Halekas, F. Leblanc, R. Lillis, J. Luhmann, Loss of the martian atmosphere to space: present-day loss rates determined from maven observations and integrated loss through time. Icarus 315, 146–157 (2018)

    Article  ADS  Google Scholar 

  7. B. Langlais, Y. Quesnel, New perspectives on mars’ crustal magnetic field. C.R. Geosci. 340(12), 791–800 (2008)

    Article  ADS  Google Scholar 

  8. J. Deighan, S. Jain, M. Chaffin, X. Fang, J.S. Halekas, J.T. Clarke, N. Schneider, A. Stewart, J.-Y. Chaufray, J. Evans, Discovery of a proton aurora at mars. Nat. Astron. 2(10), 802–807 (2018)

    Article  ADS  Google Scholar 

  9. J.-L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S. Stern, B. Sandel, O. Korablev, Discovery of an aurora on mars. Nature 435(7043), 790–794 (2005)

    Article  ADS  Google Scholar 

  10. J.-L. Bertaux, O. Korablev, S. Perrier, E. Quemerais, F. Montmessin, F. Leblanc, S. Lebonnois, P. Rannou, F. Lefèvre, F. Forget et al., Spicam on mars express: observing modes and overview of uv spectrometer data and scientific results. J. Geophys. Res. Planets 111(E10), 996 (2006)

    Article  Google Scholar 

  11. A. Chicarro, P. Martin, R. Trautner, The mars express mission: an overview. Mars Express Sci. Payload 1240, 3–13 (2004)

    ADS  Google Scholar 

  12. D. Brain, J. Halekas, L. Peticolas, R. Lin, J. Luhmann, D. Mitchell, G. Delory, S. Bougher, M. Acuña, H. Rème, On the origin of aurorae on mars. Geophys. Res. Lett. 33(1), 68 (2006)

    Article  Google Scholar 

  13. B.M. Jakosky, R.P. Lin, J.M. Grebowsky, J.G. Luhmann, D. Mitchell, G. Beutelschies, T. Priser, M. Acuna, L. Andersson, D. Baird, The mars atmosphere and volatile evolution (maven) mission. Space Sci. Rev. 195(1), 3–48 (2015)

    Article  ADS  Google Scholar 

  14. N. Schneider, Z. Milby, S. Jain, J.-C. Gérard, L. Soret, D. Brain, T. Weber, Z. Girazian, J. McFadden, J. Deighan, Discrete aurora on mars: insights into their distribution and activity from maven/iuvs observations. J. Geophys. Res. Space Phys. 126(10), 2021–029428 (2021)

    Article  Google Scholar 

  15. S. Xu, D.L. Mitchell, J.P. McFadden, N.M. Schneider, Z. Milby, S. Jain, T. Weber, D.A. Brain, G.A. DiBraccio, J. Halekas, Empirically determined auroral electron events at mars-maven observations. Geophys. Res. Lett. 49(6), 2022–097757 (2022)

    Article  Google Scholar 

  16. Z. Girazian, N.M. Schneider, Z. Milby, X. Fang, J. Halekas, T. Weber, S. Jain, J.-C. Gérard, L. Soret, J. Deighan, Discrete aurora at mars: dependence on upstream solar wind conditions. J. Geophys. Res. Space Phys. 127(4), 2021–030238 (2022)

    Article  Google Scholar 

  17. N.M. Schneider, J.I. Deighan, S.K. Jain, A. Stiepen, A.I.F. Stewart, D. Larson, D.L. Mitchell, C. Mazelle, C.O. Lee, R.J. Lillis, Discovery of diffuse aurora on mars. Science 350(6261), 0313 (2015)

    Article  Google Scholar 

  18. W.E. McClintock, N.M. Schneider, G.M. Holsclaw, J.T. Clarke, A.C. Hoskins, I. Stewart, F. Montmessin, R.V. Yelle, J. Deighan, The imaging ultraviolet spectrograph (iuvs) for the maven mission. Space Sci. Rev. 195(1), 75–124 (2015)

    Article  ADS  Google Scholar 

  19. B. Ritter, J.-C. Gérard, B. Hubert, L. Rodriguez, F. Montmessin, Observations of the proton aurora on mars with spicam on board mars express. Geophys. Res. Lett. 45(2), 612–619 (2018). https://doi.org/10.1002/2017GL076235

    Article  ADS  Google Scholar 

  20. G.M. Holsclaw, J. Deighan, H. Almatroushi, M. Chaffin, J. Correira, J.S. Evans, M. Fillingim, A. Hoskins, S.K. Jain, R. Lillis, The emirates mars ultraviolet spectrometer (emus) for the emm mission. Space Sci. Rev. 217(8), 1–49 (2021)

    Article  Google Scholar 

  21. M.S. Chaffin, C.M. Fowler, J. Deighan, S. Jain, G. Holsclaw, A. Hughes, R. Ramstad, Y. Dong, D. Brain, H. AlMazmi, Patchy proton aurora at mars: A global view of solar wind precipitation across the martian dayside from emm/emus. Geophys. Res. Lett. 49(17), 2022–099881 (2022)

    Article  Google Scholar 

  22. J.S. Halekas, R.J. Lillis, D.L. Mitchell, T.E. Cravens, C. Mazelle, J.E.P. Connerney, J.R. Espley, P.R. Mahaffy, M. Benna, B.M. Jakosky, J.G. Luhmann, J.P. McFadden, D.E. Larson, Y. Harada, S. Ruhunusiri, Maven observations of solar wind hydrogen deposition in the atmosphere of mars. Geophys. Res. Lett. 42(21), 8901–8909 (2015). https://doi.org/10.1002/2015GL064693

    Article  ADS  Google Scholar 

  23. A. Hughes, M. Chaffin, E. Mierkiewicz, J. Deighan, S. Jain, N. Schneider, M. Mayyasi, B. Jakosky, Proton aurora on mars: a dayside phenomenon pervasive in southern summer. J. Geophys. Res. Space Phys. 124(12), 10533–10548 (2019). https://doi.org/10.1029/2019JA027140

    Article  ADS  Google Scholar 

  24. J.S. Halekas, S. Ruhunusiri, Y. Harada, G. Collinson, D.L. Mitchell, C. Mazelle, J.P. McFadden, J.E.P. Connerney, J.R. Espley, F. Eparvier, J.G. Luhmann, B.M. Jakosky, Structure, dynamics, and seasonal variability of the mars-solar wind interaction: maven solar wind ion analyzer in-flight performance and science results. J. Geophys. Res. Space Phys. 122(1), 547–578 (2017). https://doi.org/10.1002/2016JA023167

    Article  ADS  Google Scholar 

  25. J.C. Gérard, B. Hubert, B. Ritter, V.I. Shematovich, D.V. Bisikalo, Lyman-alpha emission in the martian proton aurora: line profile and role of horizontal induced magnetic field. Icarus 321, 266–271 (2019). https://doi.org/10.1016/j.icarus.2018.11.013

    Article  ADS  Google Scholar 

  26. A. Hughes, M. Chaffin, E. Mierkiewicz, G. DiBraccio, N. Schneider, J. Deighan, S. Jain, B. Jakosky, Evaluating the Influence of the Martian Magnetic Field Environment on Proton Aurora Activity. In: AGU Fall Meeting Abstracts, vol. 2021, pp. 44–02 (2021)

  27. H. Amiri, D. Brain, O. Sharaf, P. Withnell, M. McGrath, M. Alloghani, M. Al Awadhi, S. Al Dhafri, O. Al Hamadi, H. Al Matroushi, The emirates mars mission. Space Sci. Rev. 218(1), 1–46 (2022)

    Article  ADS  Google Scholar 

  28. H. Almatroushi, H. AlMazmi, N. AlMheiri, M. AlShamsi, E. AlTunaiji, K. Badri, R.J. Lillis, F. Lootah, M. Yousuf, S. Amiri, Emirates mars mission characterization of mars atmosphere dynamics and processes. Space Sci. Rev. 217(8), 1–31 (2021)

    Article  Google Scholar 

  29. D. Atri, A. Alhantoobi, K. Fialova, S.P. Singh, D.B. Dhuri, N. Abdelmoneim, Atlas of Mars: A Photographic Atlas, Prepared with Observations from the Emirates Mars Mission, or “Hope” (al-amal). New York University Abu Dhabi Center for Space Science, Abu Dhabi, pp. 100 (2022)

  30. D. Atri, N. Abdelmoneim, D.B. Dhuri, M. Simoni, Diurnal variation of the surface temperature of mars with the emirates mars mission: a comparison with curiosity and perseverance rover measurements. arXiv preprint arXiv:2204.12850 (2022)

  31. R.J. Lillis, J. Deighan, D. Brain, M. Fillingim, S. Jain, M. Chaffin, G. Holsclaw, K. Chirakkil, H. Al Matroushi, F. Lootah, H. Al Mazmi et al., First synoptic images of fuv discrete aurora and discovery of sinuous aurora at mars by emm emus. Geophys. Res. Lett. 3, 2022–099820 (2022)

    Google Scholar 

  32. J.W. Gao, Z.J. Rong, L. Klinger, X.Z. Li, D. Liu, Y. Wei, A spherical harmonic martian crustal magnetic field model combining data sets of maven and mgs. Earth Space Sci. 8(10), 2021 (2021). https://doi.org/10.1029/2021EA001860. (e2021EA001860 2021EA001860)

  33. M.M.J. Crismani, J. Deighan, N.M. Schneider, J.M.C. Plane, P. Withers, J. Halekas, M. Chaffin, S. Jain, Localized ionization hypothesis for transient ionospheric layers. J. Geophys. Res. Space Phys. 124(6), 4870–4880 (2019). https://doi.org/10.1029/2018JA026251

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the New York University Abu Dhabi (NYUAD) Institute Research Grant G1502 and the ASPIRE Award for Research Excellence (AARE) Grant S1560 by the Advanced Technology Research Council (ATRC). EMM data were obtained from the EMM Science Data Center (SDC) and MAVEN data from the Planetary Data System (PDS). Data analysis was performed on the NYUAD High Performance Computing (HPC) resources. It is a pleasure to contribute this article to the special issue in honor of Professor Kurt Becker.

Author information

Authors and Affiliations

Authors

Contributions

DA conceived the project in consultation with KRS and DBD. DA, DBD and MS worked with spacecraft data. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Dimitra Atri.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

A Appendix: Observations of discrete auroral events

A Appendix: Observations of discrete auroral events

See Figs. 5, 6 and 7.

Fig. 5
figure 5

Observations of auroras by the EMUS instrument in the 130.4 nm oxygen band (part 1)

Fig. 6
figure 6

Observations of auroras by the EMUS instrument in the 130.4 nm oxygen band (part 2)

Fig. 7
figure 7

Observations of auroras by the EMUS instrument in the 130.4 nm oxygen band (part 3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atri, D., Dhuri, D.B., Simoni, M. et al. Auroras on mars: from discovery to new developments. Eur. Phys. J. D 76, 235 (2022). https://doi.org/10.1140/epjd/s10053-022-00566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00566-5

Navigation