Skip to main content
Log in

Mass spectra and appearance energies of cationic fragments for electron ionization of 2-butanol

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, the mass spectrum (MS) and the appearance energies (AEs) of the ionic fragments formed in the collisions of electrons with 2-butanol were studied using a HIDEN—EPIC300 mass spectrometer. The MS was acquired for the electron impact energy of 70 eV, in the mass region of 1–75 amu and with a mass resolution of 1 amu. Here we observed the formation of 51 cationic fragments, which is a significant extension to the data previously reported in the literature. The relative abundances of the registered peaks in the MS compare reasonably well with the available values reported in the literature, where such a comparison can be made. The AEs were determined from the acquisition of ionic fragmentation curves of 2-butanol, for the electron impact energies covering the region of the ionic fragment formation threshold up to about ten eV above that value. The extended Wannier law was applied to obtain the AEs and Wannier exponents (p) of the fragments recorded in the MS, with relative intensities typically > 0.5% of the most intense fragment. This yielded data for 38 fragments, for which data of 30 of those fragments are reported for the first time in this work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article].

References

  1. M. DeRousseau, B. Gully, C. Taylor, D. Apelian, Y. Wang, JOM 69, 1575 (2017)

    Google Scholar 

  2. X. Shu, Y. Guo, W. Yang, K. Wei, G. Zhu, Energy Rep. 7, 2302 (2021)

    Google Scholar 

  3. M. Pagliaro, F. Meneguzzo, Heliyon 5, e01866 (2019)

    Google Scholar 

  4. G. Krishna, Transp. Res. Interdiscip. Perspect. 10, 100364 (2021)

    Google Scholar 

  5. D. Russo, M. Dassisti, V. Lawlor, A.G. Olabi, Renew. Sustain. Energy Rev. 16, 4056 (2012)

    Google Scholar 

  6. K. Bhattarai, W.M. Stalick, S. Mckay, G. Geme, N. Bhattarai, J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 46, 1424 (2011)

    Google Scholar 

  7. F. Schmieder, Z. Elektrochem, Angew. Phys. Chem. 36, 700 (1930)

    Google Scholar 

  8. R. Rejoub, C.D. Morton, B.G. Lindsay, R.F. Stebbings, J. Chem. Phys. 118, 1756 (2003)

    ADS  Google Scholar 

  9. O. Sueoka, Y. Katayama, S. Mori, At. Coll. Res. Jpn. Prog. Rep. 11, 17 (1985)

    Google Scholar 

  10. C. Szmytkowski, A.M. Krzysztofowicz, J. Phys. B: At. Mol. Opt. Phys. 28, 4291 (1995)

    ADS  Google Scholar 

  11. M. Vinodkumar, C. Limbachiya, K.N. Joshipura, B. Vaishnav, S. Gangopadhyay, J. Phys. Conf. Ser. 115, 012013 (2008)

    Google Scholar 

  12. D.G.M. Silva, T. Tejo, J. Muse, D. Romero, M.A. Khakoo, M.C.A. Lopes, J. Phys. B: At. Mol. Opt. Phys. 43, 015201 (2010)

    ADS  Google Scholar 

  13. X.M. Tan, D.H. Wang, Nucl. Instrum. Methods Phys. Res. B 269, 1094 (2011)

    ADS  Google Scholar 

  14. M.T. Lee, G.L.C. de Souza, L.E. Machado, L.M. Brescansin, A.S. dos Santos, R.R. Lucchese, R.T. Sugohara, M.G.P. Homem, I.P. Sanches, I. Iga, J. Chem. Phys. 136, 114311 (2012)

    ADS  Google Scholar 

  15. M. Vinodkumar, C. Limbachiya, A. Barot, N. Mason, Phys. Rev. A 87, 012702 (2013)

    ADS  Google Scholar 

  16. D.G.M. da Silva, M. Gomes, S. Ghosh, I.F.L. Silva, W.A.D. Pires, D.B. Jones, F. Blanco, G. Garcia, S.J. Buckman, M.J. Brunger, M.C.A. Lopes, J. Chem. Phys. 147, 194307 (2017)

    ADS  Google Scholar 

  17. M. Gomes, D.G.M. da Silva, A.C.P. Fernandes, S. Ghosh, W.A.D. Pires, D.B. Jones, G. García, M.J. Brunger, M.C.A. Lopes, J. Chem. Phys. 150, 194307 (2019)

    ADS  Google Scholar 

  18. M.A. Khakoo, J. Muse, H. Silva, M.C.A. Lopes, C. Winstead, V. McKoy, E.M. de Oliveira, R.F. da Costa, M.T.N. do Varella, M.H.F. Bettega, M.A.P. Lima, Phys. Rev. A 78, 062714 (2008)

    ADS  Google Scholar 

  19. D. Bouchiha, J.D. Gorfinkiel, L.G. Caron, L. Sanche, J. Phys. B: At. Mol. Opt. Phys. 40, 1259 (2007)

    ADS  Google Scholar 

  20. M.A. Khakoo, J. Blumer, K. Keane, C. Campbell, H. Silva, M.C.A. Lopes, C. Winstead, V. KcKoy, R.F. da Costa, L.G. Ferrira, M.A.P. Lima, M.H.F. Bettega, Phys. Rev. A 77, 042705 (2008)

    ADS  Google Scholar 

  21. R.T. Sugohara, M.G.P. Homem, I.P. Sanches, A.F. de Moura, M.T. Lee, I. Iga, Phys. Rev. A 83, 032708 (2011)

    ADS  Google Scholar 

  22. K.L. Nixon, W.A.D. Pires, R.F.C. Neves, H.V. Duque, D.B. Jones, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 404, 48 (2016)

    Google Scholar 

  23. W.A.D. Pires, K.L. Nixon, S. Ghosh, R.F.C. Neves, H.V. Duque, R.A.A. Amorim, D.B. Jones, F. Blanco, G. Garcia, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 422, 32 (2017)

    Google Scholar 

  24. W.A.D. Pires, K.L. Nixon, S. Ghosh, R.A.A. Amorim, R.F.C. Neves, H.V. Duque, D.G.M. da Silva, D.B. Jones, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 430, 158 (2018)

    Google Scholar 

  25. S. Ghosh, K.L. Nixon, W.A.D. Pires, R.A.A. Amorim, R.F.C. Neves, H.V. Duque, D.G.M. da Silva, D.B. Jones, F. Blanco, G. Garcia, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 430, 44 (2018)

    Google Scholar 

  26. N. Duric, I. Cadez, M.V. Kurepa, Fizika 21, 339 (1989)

    Google Scholar 

  27. S.K. Srivastava, E. Krishnakumar, A.F. Fucaloro, T. van Note, J. Geophys. Res. 101, 26155 (1996)

    ADS  Google Scholar 

  28. H. Deutsch, K. Becker, R. Basner, M. Schmidt, T.D. Märk, J. Phys. Chem. A 102, 8819 (1998)

    Google Scholar 

  29. J.E. Hudson, M.L. Hamilton, C. Vallance, P.W. Harland, Phys. Chem. Chem. Phys. 5, 3162 (2003)

    Google Scholar 

  30. S. Pal, Chem. Phys. 302, 119 (2004)

    Google Scholar 

  31. M. Vinodkumar, K. Korot, P.C. Vinodkumar, Int. J. Mass. Spectrom. 305, 26 (2011)

    Google Scholar 

  32. A.N. Zavilopulo, F.F. Chipev, L.M. Kokhtych, Nucl. Instrum. Methods Phys. Res. B 233, 302 (2005)

    ADS  Google Scholar 

  33. K.M. Douglas, S.D. Price, J. Chem. Phys. 131, 224305 (2009)

    ADS  Google Scholar 

  34. C.S. Cummings, W. Bleakney, Phys. Rev. 58, 787 (1940)

    ADS  Google Scholar 

  35. M.C.A. Lopes, W.A.D. Pires, K.L. Nixon, R.A.A. Amorim, D.G.M. Silva, A.C.P. Fernandes, S. Ghosh, D.B. Jones, L. Campbell, R.F.C. Neves, H.V. Duque, G. García, F. Blanco, M.J. Brunger, Eur. Phys. J. D 74, 88 (2020)

    ADS  Google Scholar 

  36. C. Regalbuto, M. Pennisi, B. Wigg, D. Kyritsis, Conference Paper, in SAE Technical Papers. https://doi.org/10.4271/2012-01-1271 (2012)

  37. Technology collaboration programme on advanced motor fuels: http://www.iea-amf.org/content/fuel_information/butanol/properties#octane_numbers

  38. W. Han, C. Yao, Fuel 150, 29 (2015)

    Google Scholar 

  39. Hiden Analytical: http://www.hidenanalytical.com/en/.

  40. R.A.A. Amorim, W.A.D. Pires, A.C.P. Fernandes, T.M. Casagrande, D.B. Jones, F. Blanco, G. Garcia, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 64, 116556 (2021)

    Google Scholar 

  41. NIST Standard Reference Database, 2-butanol Mass Spectrum. https://webbook.nist.gov/cgi/cbook.cgi?ID=C78922&Mask=200#Mass-Spec

  42. Spectral Database for Organic Compounds (SDBS). https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

  43. B.G. Lindsay, M.A. Mangan, Photon and Electron Interactions with Atoms, Molecules and Ions, in Landolt-Börstein Chapter 5, vol. 17, ed. by Y. Itikawa (Springer, Berlin, 2003)

    Google Scholar 

  44. D.B. Jones, M. Yamazaki, N. Watanabe, M. Takahashi, Phys. Rev. A 86, 062707 (2012)

    ADS  Google Scholar 

  45. D.B. Jones, M. Yamazaki, N. Watanabe, M. Takahashi, Phys. Rev. A 87, 022714 (2013)

    ADS  Google Scholar 

  46. R. A. A. Amorim, A. C. Diniz, C. B. Oliveira, O. L. Oliveira Junior, D. B. Jones, F. Blanco, G. García, M. J. Brunger and M. C. A. Lopes, Eur. Phys. J. D (2022). (In preparation).

  47. T. Fiegele, G. Hanel, I. Torres, M. Lezius, T.D. Märk, J. Phys. B 33, 4263 (2000)

    ADS  Google Scholar 

  48. S. Denifl, B. Sonnweber, G. Hanel, P. Scheier, T.D. Märk, Int. J. Mass. Spectrom. 238, 47 (2004)

    Google Scholar 

  49. M.C.A. Lopes, W.A.D. Pires, R.A.A. Amorim, A.C.P. Fernandes, T.M. Casagrande, D.B. Jones, F. Blanco, G. Garcia, M.J. Brunger, Int. J. Mass Spectrom. 5, 116395 (2020)

    Google Scholar 

  50. P.R. Bevington, Data reduction and error analysis for the physical sciences (McGraw-Hill, New York, 1969)

    Google Scholar 

  51. NIST Standard Reference Database, Gas phase ion energetics data. https://webbook.nist.gov/cgi/cbook.cgi?ID=C78922&Mask=20#Ion-Energetics

Download references

Acknowledgements

This work was supported by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and FINEP. M.C.A.L. acknowledges financial support from CNPq, while R.A.A.A., C.B.O. and O.L.O.J. acknowledge their fellowships from CAPES. Some financial assistance from the Australian Research Council through grant # DP220101480 is also noted. DBJ is the recipient of an Australian Research Council Future Fellowship (FT210100264) funded by the Australian Government. Finally, G. Garcia and F. Blanco thank the Spanish Ministerio de Ciencia e Innovación for the project grant PID2019-104727RB.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to M. C. A. Lopes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, R.A.A., Diniz, A.C., Oliveira, C.B. et al. Mass spectra and appearance energies of cationic fragments for electron ionization of 2-butanol. Eur. Phys. J. D 76, 207 (2022). https://doi.org/10.1140/epjd/s10053-022-00537-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00537-w

Navigation