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Abstract. We calculate the time-dependent formation of Bose–Einstein condensates (BECs) in potassium
vapours based on a previously derived exactly solvable nonlinear boson diffusion equation (NBDE). Ther-
malization following a sudden energy quench from an initial temperature Ti to a final temperature Tf

below the critical value and BEC formation are accounted for using closed-form analytical solutions of the
NBDE. The time-dependent condensate fraction is compared with available 39K data for various scattering
lengths.

1 Introduction

The time-dependent mathematical modelling of noneq-
uilibrium phenomena is an outstanding problem in
physics: How does an isolated quantum many-body sys-
tem thermalize that is originally far from equilibrium?
This problem is particularly relevant and interesting for
ultracold Bose gases, where in the course of thermaliza-
tion a transition to a Bose–Einstein condensate (BEC)
can occur below a critical temperature Tc which it is
not yet fully understood [1].

Ever since and even before the discovery of BEC in
alkali atoms, numerical nonequilibrium theories have
been developed to account for the time dependence of
thermalization and condensate formation. Predictions
such as [2] for sodium and rubidium had been made.
For 23Na, some of these theoretical results for the time-
dependent condensate growth [3] have been compared
with experimental data [4].

For 87Rb, data have been compared to a numerical
model based on quantum kinetic theory [5]. Here, cool-
ing into the quantum degenerate regime was achieved
by continuous evaporation for a duration of several sec-
onds, whereas in the sodium experiment a short radio-
frequency pulse was applied to remove high-energy
atoms.

Only recently, new experimental results for potas-
sium have become available with a sufficiently detailed
time resolution: thermalization and condensate forma-
tion is investigated in a homogeneous 3D Bose gas of
39K with tunable interactions and near-perfect isolation
in a cylindrical optical box [1].

As a transparent and analytically solvable model for
the time dependence of thermalization and condensate
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formation of bosonic systems, a nonlinear boson dif-
fusion equation (NBDE) has been derived in Ref. [6],
applied to ultracold atoms [7,8], and solved exactly with
the necessary boundary conditions at the singularity [9].
We have used the model for the calculation of the time-
dependent condensate fraction in 23Na [10], where we
have tested it successfully against the historical MIT
data [4]. In the present work, we perform a related cal-
culation for 39K to compare with the newly available
Cambridge data for tunable scattering lengths [1].

2 The model

First we briefly review our previously developed [6–
10] nonlinear model that we use in this work to com-
pute the nonequilibrium evolution following a sudden
energy quench and time-dependent condensate frac-
tions in equilibrating Bose gases of ultracold atoms with
a focus on a comparison with recent data [1] for 39K.
The cold-atom vapour in a trap is described as a time-
dependent mean field with a collision term, and we
consider only s-wave scattering with the correspond-
ing scattering lengths. The N -body density operator
ρ̂N (t) is composed of N single-particle wave functions
of the atoms which are solutions of the time-dependent
Hartree–Fock equations plus a time-irreversible colli-
sion term K̂N (t) that causes the system to thermalize
through random two-body collisions (� = c = 1)

i
∂ρ̂N (t)

∂t
=

[
ĤHF(t), ρ̂N (t)

]
+ iK̂N (t), (1)
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with the self-consistent Hartree–Fock mean field ĤHF(t)
of the atoms in a trap that provides an external poten-
tial.

The full many-body problem is reduced to the one-
body level in an approximate version for the ensemble-
averaged single-particle density operator ρ̄1(t). Its diag-
onal elements represent the probability for a particle to
be in a state |α〉 with energy εα

(
ρ̄1(t)

)
α,α

= n(εα, t) ≡ nα(ε, t). (2)

The total number of particles is N =
∑

α nα, and
we neglect here the off-diagonal terms of the density
matrix. As discussed in Refs. [6,8,10], the occupation
number distribution nα(ε, t) in a finite Bose system
obeys a Boltzmann-like collision term, where the dis-
tribution function depends only on energy and time.
A condition for such a reduction to 1 + 1 dimensions
is spatial and momentum isotropy. The corresponding
assumption of sufficient ergodicity has been widely dis-
cussed in the literature [11–16]. For the thermal cloud
of cold atoms surrounding a Bose–Einstein condensate
(BEC), it is expected to be essentially fulfilled, even
though the condensate in a trap is spatially anisotropic.
Different spatial dimensions enter our present formula-
tion through the density of states, which depends also
on the type of confinement. The model calculations in
this work are for a 3D system, and in line with the 39K
experiment [1], we investigate results for the density of
states of bosonic atoms confined in a cylindrical optical
box.

The collision term for the single-particle occupation
number distribution of the energy eigenstates εα, n ≡
nα ≡ 〈n(εα, t)〉, can be transformed [6] into a nonlinear
partial differential equation

∂n

∂t
= − ∂

∂ε

[
v n (1 + n) + n

∂D

∂ε

]
+

∂2

∂ε2
[
D n

]
. (3)

In this nonlinear boson diffusion equation (NBDE),
the drift term v(ε, t) accounts for dissipative effects,
whereas D(ε, t) mediates diffusion of particles in the
energy space: It accounts for the broadening of the dis-
tribution functions, and in particular, for the softening
of the sharp cut at ε = εi that signifies the quench,
as well as for the diffusion of particles into the con-
densed state. The many-body physics is contained in
these transport coefficients, which depend on energy,
time, and the second moment of the interaction.

It has been shown [10] that the stationary solution
n∞(ε) of the NBDE for t → ∞ equals the Bose–Einstein
equilibrium distribution neq(ε)

n∞(ε) = neq(ε) =
1

e(ε−μ)/T − 1
, (4)

provided the ratio v/D has no energy dependence,
requiring limt→∞[−v(ε, t)/D(ε, t)] ≡ 1/T . The chemi-
cal potential is μ ≤ 0 in a finite Bose system.

In the limit of energy-independent transport coeffi-
cients, the nonlinear boson diffusion equation for the
occupation number distribution n(ε, t) becomes

∂n

∂t
= −v

∂

∂ε

[
n (1 + n)

]
+ D

∂2n

∂ε2
. (5)

Again, the thermal equilibrium distribution neq is a sta-
tionary solution with μ ≤ 0 and T = −D/v.

The NBDE with constant transport coefficients pre-
serves the essential features of Bose–Einstein statistics
that are contained in the bosonic Boltzmann equation.
It is one of the few nonlinear partial differential equa-
tions with a clear physical meaning that can be solved
exactly through a nonlinear transformation, as outlined
in Refs. [6–8]. The resulting solution is

n(ε, t) = T
∂

∂ε
ln Z(ε, t) − 1

2
= T

1
Z

∂Z
∂ε

− 1
2

, (6)

where the time-dependent partition function Z(ε, t)
obeys a linear diffusion equation which has a Gaussian
Green’s function G(ε, x, t).

The partition function can then be written as an inte-
gral over the Green’s function and an exponential func-
tion F (x)

Z(ε, t) =
∫ +∞

−∞
G(ε, x, t)F (x) dx . (7)

F (x) depends on the initial occupation number distri-
bution ni according to

F (x) = exp
[
− 1

2D

(
vx + 2v

∫ x

0

ni(y) dy
)]

. (8)

The definite integral over the initial conditions taken at
the lower limit in Eq. (8) drops out in the calculation
of n(ε, t) and can be replaced [9] by the indefinite inte-
gral with the integration constant set to zero without
affecting the accuracy of the calculation.

These modifications allow us to compute the parti-
tion function and the overall solution for the occupation
number distribution function Eq. (6) analytically.

With the free Green’s function G ≡ Gfree of the linear
diffusion equation, the physically correct solution with
the Bose–Einstein equilibrium limit is attained in the
UV region, but not in the IR [6]. To solve this prob-
lem, one has to consider the boundary conditions at
the singularity ε = μ ≤ 0 [8]. They can be expressed
as limε↓μ n(ε, t) = ∞ ∀ t. One obtains a vanishing par-
tition function at the boundary Z(μ, t) = 0, and the
energy range is restricted to ε ≥ μ. This requires a new
Green’s function [8] that equals zero at ε = μ ∀ t. It can
be written as

Gb(ε, x, t) = Gfree(ε − μ, x, t)
−Gfree(ε − μ,−x, t) , (9)
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and the partition function with this boundary condition
becomes

Zb(ε, t) =
∫ +∞

μ

Gb(ε, x, t)F (x) dx , (10)

which is equivalent to
∫ +∞
0

Gb(ε, x, t)F (x + μ) dx: the
function F remains unaltered with respect to Eq. (8),
but its argument is shifted by the chemical potential.

For fixed chemical potential μ and an initial tem-
perature Ti that differs from the final temperature
Tf = −D/v as in an energy quench, we have solved
the combined initial and boundary value problem
exactly in Ref. [9] using the above nonlinear trans-
formation [8] from Eq. (6). Expressions of the form
[1 − exp (−z/Ti)]Ti/Tf that appear in F (x) and thus,
in the partition function Eq. (10), can be reformulated
using the generalized binomial theorem

(1 + x)s =
∞∑

k=0

(
s

k

)
xk , (11)

which results in an infinite series expansion for the time-
dependent partition function (and also for its deriva-
tive),

Z(ε, t) =
√

4Dt exp
(
− μ

2Tf

) ∞∑

k=0

( Ti
Tf

k

)

(−1)k × fTi,Tf
k (ε, t) . (12)

The analytical expressions for fTi,Tf
k (ε, t) are combina-

tions of exponentials and error functions, and they are
given explicitly in Ref. [9]. We can now compute the
distribution function directly from Eq. (6). The conver-
gence of the solutions has been studied in Ref. [10],
indicating that—depending on the system and the spe-
cific observable—a result with kmax = 10 − 40 expan-
sion coefficients is indistinguishable from the exact solu-
tion with kmax = ∞. It has also been shown that the
series terminates in case Ti/Tf is an integer, and we
shall explicitly use that property in this work, where
the exact solution is already obtained for kmax = 4. A
brief summary of the nonlinear diffusion model for both
boson and fermion systems at low and high energies and
temperatures is presented in Ref. [17].

3 Energy quench and thermalization

In the 39K experiment of Ref. [1] with tunable inter-
actions, a far-from-equilibrium atomic cloud is created
by removing 77% of the atoms and � 97.5% of the
total energy through an energy quench below the crit-
ical temperature, thus setting the stage for subsequent
condensate formation. This quench corresponds to cut-

ting off the atoms with energy ε > εi according to

ni(ε) =
1

exp ( ε−μi
Ti

) − 1
θ(1 − ε/εi) . (13)

Hence, the number of atoms just after the quench
becomes with the 3D density of states g(ε) ∝ √

ε in
a box

Ni ∝ ∫ εi
0

√
ε

exp (
ε−μi

Ti
)−1

dε

= 0.23
∫ ∞
0

√
ε

exp (
ε−μi

Ti
)−1

dε . (14)

In agreement with experiment [1], it is kept constant
in the subsequent thermalization and condensate for-
mation process. The equilibrium value of the ensuing
time-dependent condensate fraction for t → ∞ can then
be calculated from the ratio of the difference in parti-
cle content of the initial nonequilibrium distribution at
finite μi < 0 minus the final equilibrium Bose–Einstein
distribution with temperature Tf and vanishing chem-
ical potential, divided by particle content of the initial
distribution. The result is

N eq
c

Ni
= 1 − ∫ ∞

0
g(ε)neq(ε)dε

[ ∫ εi
0

g(ε)ni(ε)dε
]−1

= 1 − T
3/2
f ζ(3/2)Γ(3/2)

[ ∫ εi
0

√
ε

exp (
ε−μi

Ti
)−1

dε
]−1

(15)

where the integration over the initial thermal distri-
bution has an upper limit of ε = εi, according to the
cut due to the quench, θ (1 − ε/εi). The measured equi-
librium condensate fraction [1] is N eq

c /Ni = 40(5)%
for all scattering lengths that have been investigated,
a = (100 − 800) a∞ with the Bohr radius a∞.

Equations (14),(15) provide two conditions to calcu-
late the initial value of the chemical potential μi, and
the cut ε = εi that defines the quench. Inserting Eq. (14)
into Eq. (15), an implicit equation for the initial chem-
ical potential μ = μi that does not depend on εi is
obtained, and with this value, the cut ε = εi can directly
be computed from Eq. (14).

In the 39K experiment, the initial temperature before
the quench is Ti = 130 nK, and the final temperature
Tf = 32(2) nK in accordance with energy and parti-
cle number conservation [1]. In view of the fact that
these numbers as well as the experimental equilibrium
condensate fraction of 40(5) % are approximate, we use
a value of Tf ≡ 32.5 nK in our model calculation.
This considerably simplifies the analytical calculations,
because the value of Ti/Tf is an integer, such that the
series expansion of the exact analytical solution of the
NBDE terminates already at kmax = 4. (A calculation
with Tf = 32.0 nK and kmax = 40 yields results which
are hardly distinguishable.)

With these values for the initial and final tempera-
tures, together with a removal rate of 77% of the atoms
in the quench and an equilibrium condensate fraction
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of 40%, we obtain the resulting values for the initial
chemical potential and the cooling cut,1 as

μi = −0.67 nK, εi = 15.56 nK . (16)

At and below the cut, the average initial occupation is
ni (ε ≤ εi) ≥ 7.52. The nonequilibrium system is highly
overoccupied and will move quickly into the condensed
state to remove the surplus particles from the cloud.

In the simplified model with constant transport coef-
ficients, the values of v and D that are required for
the nonequilibrium calculation are related to the equi-
librium temperature Tf = −D/v and the local ther-
malization time τeq. The first relation is a consequence
of the equality of the stationary solution of the non-
linear diffusion equation with the Bose–Einstein distri-
bution as discussed above, whereas the thermalization
time has been derived from an asymptotic expansion
of the error functions in the analytical NBDE solutions
[6] for θ function initial conditions at the cut ε = εi
as τeq ≡ τ∞(ε = εi) = 4D/(9v2). For a general initial
distribution with a cut at ε = εi, it can be written as

τeq ≡ τ∞(ε = εi) � f D/v2 , (17)

with f = 4 for fermions [6] and f = 4/9 for bosons in
case of initial theta function distributions. The analyt-
ical result for a truncated Bose–Einstein initial distri-
bution has not been derived yet. It will be considerably
shorter than the one for a theta function distribution,
because the shape of the initial distribution is much
closer to the final BE result than a box distribution.
Here we take f = 0.045 to compute the transport coef-
ficients in order to be consistent with the thermalization
time of τ exp

eq � 600 ms estimated from the data [1] for
a = 140 a∞.

With a final temperature Tf = −D/v = 32.5 nK and
a condensate formation time τeq = f D/v2 � 600 ms
for a scattering length of a = 140 a∞, the transport
coefficients that are required for the analytical solution
of the NBDE are thus obtained as

D = f T 2
f /τeq � 0.08 (nK)2/ms ,

v = −f Tf/τeq � −0.00246 nK/ms . (18)

The nonequilibrium calculation can now be performed
with the above values for the drift and diffusion coef-
ficients and fixed chemical potential. First we com-
pute the distribution functions for quenching the dis-
tribution from Ti to Tf according to Eq. (6) with the
time-dependent partition function Z from Eq. (12). The
results for thermalization in 39K are shown in Figs. 1,
2.

Analogous analytical solutions—albeit for different
parameters—are shown in Fig. 2 of Ref. [10] to agree
precisely with numerical MATLAB solutions of the

1 Removing 97.5% of the energy [1] requires a slightly larger
value of the cut.

Fig. 1 Nonequilibrium evolution of quenched 39K vapour
calculated from the analytical solution of the nonlinear
boson diffusion equation (NBDE, [6,8]) for fixed chemical
potential. The initial state is a Bose–Einstein distribution
with Ti = 130 nK, μi = −0.67 nK truncated at εi = 15.56 nK
(see Eq. (13)), upper solid curve. The transport coefficients
are D = 0.08 (nK)2/ms, v = −0.00246 nK/ms. The final
temperature is Tf = −D/v = 32.5 nK (lower solid curve).
The time evolution of the single-particle occupation num-
ber distributions is shown at t = 0.2, 4, 20, 60, 100, 200, and
400ms (increasing dash lengths)

Fig. 2 Nonequilibrium evolution of 39K vapour based on
the NBDE as in Fig. 1, but using μ = 0 and a double log
scale. Thermalization in the UV tail is significantly slower
than below the evaporative cut and in particular, in the IR.
Timesteps are t = 8, 30, 100, 300, and 4000ms. The dot–
dashed line is the Rayleigh–Jeans power law in the initial
distribution

NBDE using appropriate boundary conditions, and
hence, we can trust that the results are correct.

Figure 1 shows the time-dependent thermalization
from the initial nonequilibrium distribution that is pro-
duced via quenching at εi = 15.56 nK to the final Bose–
Einstein equilibrium distribution with Tf = 32.5 nK
and fixed chemical potential. Using the above trans-
port coefficients, results are shown for seven timesteps
at t = 0.2, 4, 20, 60, 100, 200, and 400 ms with increas-
ing dash lengths. Thermal equilibrium in the cloud is
achieved quickly at t < 100 ms in the infrared, some-
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what more time is needed at intermediate energies, and
much more time in the ultraviolet. The equilibration
in the UV thermal tail is more clearly visible in Fig. 2,
which is a double-logarithmic plot with an additional
timestep at 4000 ms. Thermalization in the cloud below
the cut is seen to be essentially completed at the equili-
bration time τeq, but it takes much longer in the far
Maxwell–Boltzmann tail. The Rayleigh–Jeans power
law in the initial distribution is clearly visible, and also
power-law behaviour of the subsequent nonequilibrium
evolution in limited energy intervals.

4 Time-dependent condensate formation

With the analytical NBDE solutions for a given chem-
ical potential μ, we can now proceed to calculate the
time-dependent transition to the condensate with the
additional condition of particle number conservation at
each timestep. This requires a time-dependent chemi-
cal potential that eventually approaches zero, μ(t) → 0;
from then on, particles start moving into the condensed
state.

The particle number in the thermal cloud at any time
t is given by

Nth(t) =
∫ ∞

0

g(ε) ñ(ε, t) dε , (19)

with ñ(ε, t) the distribution function calculated using
the value of μ ≡ μ(t) ≤ 0 that is computed at each
timestep such that the particle number is conserved,
Nth(t) = Ni ∀t.

Once μ(t) has reached the value zero, condensation
starts, and and any further difference between the ini-
tial and the actual particle number is attributed to the
condensate,

Ni − Nth(t) = Nc(t). (20)

The definition of a time-dependent chemical potential is
debatable, as the distribution function for μi ≤ μ(t) <
0 does not have the equilibrium form. However, for
μ(t) < 0 we do not use the calculation to compute
physical observables. It is only when equilibrium at
μ(t) = 0 is reached and the phase transition to the
condensate occurs that we start calculating the time-
dependent condensate fraction from the NBDE solu-
tion plus the condition of particle number conservation.
Although the transport equation cannot explicitly treat
the buildup of coherence in the condensate because it
does not consider phases, the nonequilibrium statistical
approach together with the condition of particle num-
ber conservation thus allows to properly account for the
time-dependent number of particles that move into the
condensed state.

To evaluate the integral in Eq. (19) for the particle
number in the thermal cloud once μ = 0 has been
reached at t = τini, no analytical solution is presently

known for finite time t < ∞, but it can be evaluated
numerically. The resulting time evolution of condensate
formation in 39K is calculated first with the transport
parameters D, v of Table 1 for a scattering length,2 of
a = 140 a∞ � 7.4 nm. The initial chemical potential is
μi = −0.67 nK and it increases with time towards zero,
when condensation begins. We have tested [10] that no
condensate forms if Tf at the critical number density
nc would remain above the critical temperature Tc for
bosonic atoms of mass m,

Tc =
2π

m

(
nc

ζ( 32 )

)2/3

. (21)

This expression is a consequence of equilibrium statis-
tical mechanics—at the critical temperature, the chem-
ical potential becomes zero. It implies that sufficient
coherence for the phase transition to the condensate is
achieved when the interparticle distance becomes equal
to the thermal de Broglie wavelength. Since the Bose–
Einstein equilibrium distribution is equal to the station-
ary limit of the NBDE for t → ∞, the critical temper-
ature is an integral part of our nonequilibrium model,
just as it is part of equilibrium statistics. Accordingly,
the equilibration time τeq is equivalent to the formation
time of the thermalized condensate.

We can now compare the NBDE solutions and the
ensuing time-dependent (quasi-)condensate fractions
with the data [1] for various scattering lengths, and
here we focus on a/a∞ = 140, 280, 400 and 800. With
both transport coefficients D, v scaled linearly with the
scattering lengths (Table 1), the results are displayed in
Fig. 3. The values of the transport coefficients have not
been further optimzed with respect to the Cambridge
data at the individual scattering lengths. A related log-
log-plot is shown in Ref. [17], where the nonlinear dif-
fusion equation is discussed in a more general context
of thermalization at low and high energies as well as
temperatures for both bosonic and fermionic systems.

Condensation starts at the initiation time τini and
rises according to the condensate formation time τeq
(Table 1) towards the equilibrium value N eq

c /Ni. The
initiation time required from the data is larger than
the calculated time to reach μ = 0 due to the assump-
tion of constant transport coefficients, but considerably
smaller than the condensate formation time, τini  τeq.
These calculations are performed with our C++ code
that is based on the exact analytical NBDE solutions
for n(ε, t) from Eq. (6) with kmax = 4 in the series
expansion, and uses numerical integration methods to
compute μ(t) and Nc(t)/Ni.

The resulting thermalization timescales are seen to
be longest for the shortest scattering length a =
140 a∞ and decrease towards larger values of a/a∞ =
280, 400, 800. As is evident in particular for a = 140 a∞,
small deviations in the short-time behaviour may be
due to our basic assumption of constant transport coef-
ficients, which causes condensate formation to start

2 The untuned scattering length of 39K is 138.49 a∞ [18].
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Table 1 Transport coefficients, initiation and equilibration times for BEC formation in 39K (Ti = 130 nK, Tf = −D/v =
32.5 nK)

a (a∞) D (nK2/ms) v (nK/ms) τini (ms) τeq (ms)

140 0.08 −0.00246 130 600
280 0.16 −0.00492 65 300
400 0.229 −0.00705 46 210
800 0.457 −0.01406 23 105

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

t (ms)

N
c
(t )

/N
i

Fig. 3 Time-dependent condensate fraction for an equili-
brating 3D Bose gas of 39K in an optical box for a sin-
gle energy quench from Ti = 130 nK to Tf = 32.5 nK
as calculated from the analytical solutions of the NBDE
(solid curves) with μi = −0.67 nK, εi = 15.56 nK.
Results are shown for scattering lengths a/a∞ =140 (cir-
cles), 280 (triangles), 400 (diamonds) and 800 (squares),
plotted with Cambridge data [1]. The transport coefficients
and timescales are given in Table 1

with full strength and not gradually. This feature
appears to be absent in the 87Rb data [5], but it had also
been observed when comparing with 23Na data [10]. As
an improvement, one would have to solve the full NBDE
Eq. (3) numerically with time- and energy-dependent
transport coefficients.

With constant transport coefficients, we confirm
within the nonlinear diffusion model what has already
been shown in the experimental work [1] based solely
on their data: the time-dependent condensate fractions
for different scattering lengths fall on a single universal
curve when plotted as functions of t′ = ta/(300 a∞),
before reaching the equilibrium limit for t′ → ∞.

The 1/a dependence of the timescales—including
that of the initiation time τini and the condensate for-
mation time τeq—implies that these are set by the
inverse interaction energies [12,19], and not by the
inverse cross sections [20], which would yield a 1/a2-
scaling: A larger interaction energy causes faster ini-
tiation of the (quasi-)condensate formation and also
a more rapid thermalization towards the equilibrium

value of the condensate fraction. The 1/a- rather than
1/a2 dependence is due to the emerging coherence
between the highly occupied IR modes [21].

The nonequilibrium system shows self-similar scaling
[1], with a net flow of particles towards the infrared (bot-
tom up) and into the condensed state. This is accompa-
nied by a corresponding energy flow towards the ultra-
violet carried by a relatively small number of atoms
that build up the MB tail; see Figs. 1 and 2.

5 Conclusions

While statistical equilibrium for bosons and fermions
is uniquely determined by temperature T and chemi-
cal potential μ in the Bose–Einstein and Fermi–Dirac
distributions, we can account for the time-dependent
approach to equilibrium via a nonlinear diffusion equa-
tion.

In the approximate case of constant diffusion and
drift coefficients, we have solved the equation exactly
through a suitable nonlinear transformation. The non-
equilibrium system behaviour is determined through
diffusion coefficient D and drift coefficient v, the initial
and final temperatures, and the initial chemical poten-
tial. Particle number conservation is ensured during the
thermalization process via elastic two-body collisions.
This is essential for the proper calculation of the time-
dependent condensate fraction.

We have applied this model to the thermalization of
ultracold 39K atoms with tunable interaction strength,
and compared to recent Cambridge data. As in our
earlier comparison with 23Na MIT data for the time-
dependent condensate fraction, overall agreement with
the experimental results is found. Minor deviations in
the short-time behaviour at small scattering lengths
might indicate the limits of a description that relies
on constant transport coefficients in order to obtain an
analytical solution of the problem.

The transport equation does not consider phases
and—as other Boltzmann-type numerical approaches—
does not explicitly treat the buildup of coherence in
the condensate. Nevertheless, the nonequilibrium sta-
tistical method together with the condition of particle
number conservation allows to properly account for the
time-dependent number of particles that move into the
condensed state. It includes the condition that conden-
sate formation starts at the point in time where the
chemical potential vanishes.
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In agreement with the Cambridge data, the conden-
sate initiation time τini and the condensate formation
time τeq are inversely proportional to the tunable scat-
tering length, inducing shorter time constants for larger
scattering lengths and a universal dependence of the
(quasi-)condensate fraction on a time parameter that
scales linearly with the scattering length. The conden-
sate initiation time is found to be always considerably
shorter than the condensate formation time.

It would be valuable to have precise experimental
information about the time-dependent condensate for-
mation in other cold-atom systems such as 87Rb and
7Li using a single-quench technique to remove the high-
energy atoms under similarly controlled conditions in
order to test the available numerical and analytical
nonequilibrium statistical approaches in detailed com-
parisons with data.
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